代码如下:
#include<iostream> #include<algorithm> #include<vector> using namespace std; typedef long long ll; typedef pair<int, int> pii; const int max_n = 2e5 + 100; const int mod = 1e9 + 7; int n, m; int used[max_n]; struct edge { int u, v, cost; }E[max_n]; vector<pii> G[max_n]; bool cmp(edge e1, edge e2) { return e1.cost < e2.cost; } int father[max_n]; int color[max_n]; ll cnt0[max_n]; ll cnt1[max_n]; int par[max_n]; int rak[max_n]; void init() { for (int i = 0;i <= n;i++) { par[i] = i;rak[i] = 0; father[i] = -1; cnt0[i] = cnt1[i] = 0; G[i].clear(); } } int find(int x) { return par[x] == x ? x : par[x] = find(par[x]); } bool same(int x, int y) { return find(x) == find(y); } bool merge(int x, int y) { x = find(x);y = find(y); if (x == y)return false; if (rak[x] > rak[y]) par[y] = x; else if (rak[y] > rak[x])par[x] = y; else { par[y] = x;rak[x]++; }return true; } void kruskai() { fill(used, used + 1 + m,false); sort(E + 1, E + 1 + m, cmp); for (int i = 1;i <= m;i++) { int u = E[i].u;int v = E[i].v; if (same(u, v))continue; used[i] = true; merge(u, v); G[u].push_back({ v,E[i].cost }); G[v].push_back({ u,E[i].cost }); } } ll quickpow(ll a, ll b) { if (b < 0) return 0; ll ret = 1; a %= mod; while (b) { if (b & 1) ret = (ret * a) % mod; b >>= 1; a = (a * a) % mod; } return ret; } void solve(int u) { cnt1[u] = color[u]; cnt0[u] = !color[u]; if (G[u].size() == 1 && G[u][0].first == father[u]) return; for (int i = 0;i < G[u].size();i++) { int v = G[u][i].first; if (father[u] == v)continue; father[v] = u; solve(v); cnt1[u] += cnt1[v]; cnt0[u] += cnt0[v]; } return; } int main() { ios::sync_with_stdio(0); int t;cin >> t; while (t--) { cin >> n >> m; init(); for (int i = 1;i <= n;i++)cin >> color[i]; for (int i = 1;i <= m;i++) { cin >> E[i].u >> E[i].v; E[i].cost = i; }kruskai(); int root = 1; solve(root); ll ans = 0; for (int i = 1;i <= m;i++) { if (!used[i])continue; int u = E[i].u;int v = E[i].v; if (father[v] == u)swap(u, v); ll cont = (cnt0[root] - cnt0[u]) * cnt1[u] + (cnt1[root] - cnt1[u]) * cnt0[u]; ll res = (cont % mod) * (quickpow(2, E[i].cost) % mod) % mod; ans = (ans + res) % mod; }cout << ans << endl; } }