一.题目链接:

A^X mod P

二.题目大意:

给出 T,n, A, K,a, b, m, P.

T 组样例.

 

求 

三.分析:

由于 

所以 

如果用快速幂求和的话会 TLE.

因为 

所以只需要求 sum1[] 和 sum2[].

sum1[i]:

sum2[i]:

所以 

详见代码.

四.代码实现:

#include <set>
#include <map>
#include <ctime>
#include <queue>
#include <cmath>
#include <stack>
#include <vector>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define eps 1e-6
#define PI acos(-1.0)
#define ll long long int
using namespace std;

const int M = (int)1e5;
ll n, A, K, a, b, m, p;
ll sum1[M + 5];
ll sum2[M + 5];

void init()
{
    sum1[0] = sum2[0] = 1;
    for(int i = 1; i <= M; ++i)
        sum1[i] = sum1[i - 1] * A % p;
    sum2[1] = sum1[M];
    for(int i = 1; i <= M / 10; ++i)
        sum2[i] = sum2[i - 1] * sum2[1] % p;
}

ll f()
{
    ll fx = K;
    ll sum = 0;
    for(ll i = 1; i <= n; ++i)
    {
        sum = (sum1[fx % M] * sum2[fx / M] % p + sum) % p;
        fx = (a * fx + b) % m;
    }
    return sum % p;
}

int main()
{

    int T;
    scanf("%d", &T);
    for(int ca = 1; ca <= T; ++ca)
    {
        cin >> n >> A >> K >> a >> b >> m >> p;
        init();
        ll ans = f();
        printf("Case #%d: %lld\n", ca, ans);
    }
    return 0;
}