在编写 Flink 的程序的时候,核心的要点是构造出数据处理的拓扑结构,即任务执行逻辑的 DAG。我们先来看一下 Flink 任务的拓扑在逻辑上是怎么保存的。

StreamExecutionEnvironment
StreamExecutionEnvironment 是 Flink 在流模式下任务执行的上下文,也是我们编写 Flink 程序的入口。根据具体的执行环境不同,StreamExecutionEnvironment 有不同的具体实现类,如 LocalStreamEnvironment, RemoteStreamEnvironment 等。StreamExecutionEnvironment 也提供了用来配置默认并行度、Checkpointing 等机制的方法,这些配置主要都保存在 ExecutionConfig 和 CheckpointConfig 中。我们现在先只关注拓扑结构的产生。

通常一个 Flink 任务是按照下面的流程来编写处理逻辑的:

senv.addSource(XXX)
    .map(XXX)
  .filter(XXX)
  .addSink(XXX)

添加数据源后获得 DataStream, 之后通过不同的算子不停地在 DataStream 上实现转换过滤等逻辑,最终将结果输出到 DataSink 中。

在 StreamExecutionEnvironment 内部使用一个 List<StreamTransformation<?>> transformations 来保留生成 DataStream 的所有转换。

StreamTransformation
StreamTransformation 代表了生成 DataStream 的操作,每一个 DataStream 的底层都有对应的一个 StreamTransformation。在 DataStream 上面通过 map 等算子不断进行转换,就得到了由 StreamTransformation 构成的图。当需要执行的时候,底层的这个图就会被转换成 StreamGraph。

StreamTransformation 在运行时并不一定对应着一个物理转换操作,有一些操作只是逻辑层面上的,比如 split/select/partitioning 等。

每一个 StreamTransformation 都有一个关联的 Id,这个 Id 是全局递增的。除此以外,还有 uid, slotSharingGroup, parallelism 等信息。

StreamTransformation 有很多具体的子类,如SourceTransformation、 OneInputStreamTransformation、TwoInputTransformation、SideOutputTransformation、 SinkTransformation 等等,这些分别对应了DataStream 上的不同转换操作。

由于 StreamTransformation 中通常保留了其前向的 StreamTransformation,即其输入,因此可以据此还原出 DAG 的拓扑结构。

// OneInputTransformation
public OneInputTransformation(
            StreamTransformation<IN> input,
            String name,
            OneInputStreamOperator<IN, OUT> operator,
            TypeInformation<OUT> outputType,
            int parallelism) {
        super(name, outputType, parallelism);
        this.input = input;
        this.operator = operator;
    }

// TwoInputTransformation
public TwoInputTransformation(
            StreamTransformation<IN1> input1,
            StreamTransformation<IN2> input2,
            String name,
            TwoInputStreamOperator<IN1, IN2, OUT> operator,
            TypeInformation<OUT> outputType,
            int parallelism) {
        super(name, outputType, parallelism);
        this.input1 = input1;
        this.input2 = input2;
        this.operator = operator;
    }

DataStream

一个 DataStream 就表征了由同一种类型元素构成的数据流。通过对 DataStream 应用 map/filter 等操作,可以将一个 DataStream 转换为另一个 DataStream,这个转换的过程就是根据不同的操作生成不同的 StreamTransformation,并将其加入 StreamExecutionEnvironment 的 transformations 列表中。

例如:

//构造 StreamTransformation
OneInputTransformation<T, R> resultTransform = new OneInputTransformation<>(
                this.transformation,
                operatorName,
                operator,
                outTypeInfo,
                environment.getParallelism());

@SuppressWarnings({ "unchecked", "rawtypes" })
SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, resultTransform);
//加入到 StreamExecutionEnvironment 的列表中
getExecutionEnvironment().addOperator(resultTransform);

DataStream 的子类包括 SingleOutputStreamOperator、 DataStreamSource KeyedStream 、IterativeStream, SplitStream(已弃用)。这里要吐槽一下 SingleOutputStreamOperator 的这个类的命名,太容易和 StreamOperator 混淆了。StreamOperator 的介绍见下一小节。

除了 DataStream 及其子类以外,其它的表征数据流的类还有 ConnectedStreams (两个流连接在一起)、 WindowedStream、AllWindowedStream 。这些数据流之间的转换可以参考 Flink 的官方文档。

StreamOperator
在操作 DataStream 的时候,比如 DataStream#map 等,会要求我们提供一个自定义的处理函数。那么这些信息时如何保存在 StreamTransformation 中的呢?这里就要引入一个新的接口 StreamOperator。

StreamOperator 定义了对一个具体的算子的生命周期的管理,包括:

    //生命周期
    void setup(StreamTask<?, ?> containingTask, StreamConfig config, Output<StreamRecord<OUT>> output);

    void open() throws Exception;

    void close() throws Exception;

    @Override
    void dispose() throws Exception;

    //状态管理
    OperatorSnapshotFutures snapshotState(
        long checkpointId,
        long timestamp,
        CheckpointOptions checkpointOptions,
        CheckpointStreamFactory storageLocation) throws Exception;

    void initializeState() throws Exception;

  //其它方法暂时省略

StreamOperator 的两个子接口 OneInputStreamOperator 和 TwoInputStreamOperator 则提供了操作数据流中具体元素的方法,而 AbstractUdfStreamOperator 这个抽象子类则提供了自定义处理函数对应的算子的基本实现:

//OneInputStreamOperator
void processElement(StreamRecord<IN> element) throws Exception;
void processWatermark(Watermark mark) throws Exception;
void processLatencyMarker(LatencyMarker latencyMarker) throws Exception;

//TwoInputStreamOperator
    void processElement1(StreamRecord<IN1> element) throws Exception;
    void processElement2(StreamRecord<IN2> element) throws Exception;


//AbstractUdfStreamOperator 接受一个用户自定义的处理函数
public AbstractUdfStreamOperator(F userFunction) {
        this.userFunction = requireNonNull(userFunction);
        checkUdfCheckpointingPreconditions();
    }

至于具体到诸如 map/fliter 等操作对应的 StreamOperator,基本都是在 AbstractUdfStreamOperator 的基础上实现的。以 StreamMap 为例:

public class StreamMap<IN, OUT>
        extends AbstractUdfStreamOperator<OUT, MapFunction<IN, OUT>>
        implements OneInputStreamOperator<IN, OUT> {

    private static final long serialVersionUID = 1L;

    public StreamMap(MapFunction<IN, OUT> mapper) {
        super(mapper);
        chainingStrategy = ChainingStrategy.ALWAYS;
    }

    @Override
    public void processElement(StreamRecord<IN> element) throws Exception {
        output.collect(element.replace(userFunction.map(element.getValue())));
    }
}

由此,通过 DataStream –> StreamTransformation –> StreamOperator 这样的依赖关系,就可以完成 DataStream 的转换,并且保留数据流和应用在流上的算子之间的关系。

StreamGraph

StreamGraphGenerator 会基于 StreamExecutionEnvironment 的 transformations 列表来生成 StreamGraph。

在遍历 List<streamtransformation> 生成 StreamGraph 的时候,会递归调用StreamGraphGenerator#transform方法。对于每一个 StreamTransformation, 确保当前其上游已经完成转换。StreamTransformations 被转换为 StreamGraph 中的节点 StreamNode,并为上下游节点添加边 StreamEdge。</streamtransformation>

Collection<Integer> transformedIds;
        if (transform instanceof OneInputTransformation<?, ?>) {
            transformedIds = transformOneInputTransform((OneInputTransformation<?, ?>) transform);
        } else if (transform instanceof TwoInputTransformation<?, ?, ?>) {
            transformedIds = transformTwoInputTransform((TwoInputTransformation<?, ?, ?>) transform);
        } else if (transform instanceof SourceTransformation<?>) {
            transformedIds = transformSource((SourceTransformation<?>) transform);
        } else if (transform instanceof SinkTransformation<?>) {
            transformedIds = transformSink((SinkTransformation<?>) transform);
        } else if (transform instanceof UnionTransformation<?>) {
            transformedIds = transformUnion((UnionTransformation<?>) transform);
        } else if (transform instanceof SplitTransformation<?>) {
            transformedIds = transformSplit((SplitTransformation<?>) transform);
        } else if (transform instanceof SelectTransformation<?>) {
            transformedIds = transformSelect((SelectTransformation<?>) transform);
        } else if (transform instanceof FeedbackTransformation<?>) {
            transformedIds = transformFeedback((FeedbackTransformation<?>) transform);
        } else if (transform instanceof CoFeedbackTransformation<?>) {
            transformedIds = transformCoFeedback((CoFeedbackTransformation<?>) transform);
        } else if (transform instanceof PartitionTransformation<?>) {
            transformedIds = transformPartition((PartitionTransformation<?>) transform);
        } else if (transform instanceof SideOutputTransformation<?>) {
            transformedIds = transformSideOutput((SideOutputTransformation<?>) transform);
        } else {
            throw new IllegalStateException("Unknown transformation: " + transform);
        }

对于不同类型的 StreamTransformation,分别调用对应的转换方法,以 最典型的 transformOneInputTransform 为例:

private <IN, OUT> Collection<Integer> transformOneInputTransform(OneInputTransformation<IN, OUT> transform) {

        //首先确保上游节点完成转换
        Collection<Integer> inputIds = transform(transform.getInput());

        // the recursive call might have already transformed this
    // 由于是递归调用的,可能已经完成了转换
        if (alreadyTransformed.containsKey(transform)) {
            return alreadyTransformed.get(transform);
        }

        //确定资源共享组,用户如果没有指定,默认是default
        String slotSharingGroup = determineSlotSharingGroup(transform.getSlotSharingGroup(), inputIds);

        //向 StreamGraph 中添加 Operator, 这一步会生成对应的 StreamNode
        streamGraph.addOperator(transform.getId(),
                slotSharingGroup,
                transform.getCoLocationGroupKey(),
                transform.getOperator(),
                transform.getInputType(),
                transform.getOutputType(),
                transform.getName());

        if (transform.getStateKeySelector() != null) {
            TypeSerializer<?> keySerializer = transform.getStateKeyType().createSerializer(env.getConfig());
            streamGraph.setOneInputStateKey(transform.getId(), transform.getStateKeySelector(), keySerializer);
        }

        streamGraph.setParallelism(transform.getId(), transform.getParallelism());
        streamGraph.setMaxParallelism(transform.getId(), transform.getMaxParallelism());

        //依次连接到上游节点,创建 StreamEdge
        for (Integer inputId: inputIds) {
            streamGraph.addEdge(inputId, transform.getId(), 0);
        }

        return Collections.singleton(transform.getId());
    }

接着看一看 StreamGraph 中对应的添加节点和边的方法:

protected StreamNode addNode(Integer vertexID,
        String slotSharingGroup,
        @Nullable String coLocationGroup,
        Class<? extends AbstractInvokable> vertexClass,
        StreamOperator<?> operatorObject,
        String operatorName) {

        if (streamNodes.containsKey(vertexID)) {
            throw new RuntimeException("Duplicate vertexID " + vertexID);
        }

        StreamNode vertex = new StreamNode(environment,
            vertexID,
            slotSharingGroup,
            coLocationGroup,
            operatorObject,
            operatorName,
            new ArrayList<OutputSelector<?>>(),
            vertexClass);

        //创建 StreamNode,这里保存了 StreamOperator 和 vertexClass 信息
        streamNodes.put(vertexID, vertex);

        return vertex;
    }

在 StreamNode 中,保存了对应的 StreamOperator (从 StreamTransformation 得到),并且还引入了变量 jobVertexClass 来表示该节点在 TaskManager 中运行时的实际任务类型。

private final Class<? extends AbstractInvokable> jobVertexClass;

AbstractInvokable 是所有可以在 TaskManager 中运行的任务的抽象基础类,包括流式任务和批任务。StreamTask 是所有流式任务的基础类,其具体的子类包括 SourceStreamTask, OneInputStreamTask, TwoInputStreamTask 等。

对于一些不包含物理转换操作的 StreamTransformation,如 Partitioning, split/select, union,并不会生成 StreamNode,而是生成一个带有特定属性的虚拟节点。当添加一条有虚拟节点指向下游节点的边时,会找到虚拟节点上游的物理节点,在两个物理节点之间添加边,并把虚拟转换操作的属性附着上去。

以 PartitionTansformation 为例, PartitionTansformation 是 KeyedStream 对应的转换:

//StreamGraphGenerator#transformPartition
private <T> Collection<Integer> transformPartition(PartitionTransformation<T> partition) {
        StreamTransformation<T> input = partition.getInput();
        List<Integer> resultIds = new ArrayList<>();

        //递归地转换上游节点
        Collection<Integer> transformedIds = transform(input);

        for (Integer transformedId: transformedIds) {
            int virtualId = StreamTransformation.getNewNodeId();
            //添加虚拟的 Partition 节点
            streamGraph.addVirtualPartitionNode(transformedId, virtualId, partition.getPartitioner());
            resultIds.add(virtualId);
        }

        return resultIds;
    }

// StreamGraph#addVirtualPartitionNode
public void addVirtualPartitionNode(Integer originalId, Integer virtualId, StreamPartitioner<?> partitioner) {

        if (virtualPartitionNodes.containsKey(virtualId)) {
            throw new IllegalStateException("Already has virtual partition node with id " + virtualId);
        }

        //添加一个虚拟节点,后续添加边的时候会连接到实际的物理节点
        virtualPartitionNodes.put(virtualId,
                new Tuple2<Integer, StreamPartitioner<?>>(originalId, partitioner));
    }

前面提到,在每一个物理节点的转换上,会调用 StreamGraph#addEdge 在输入节点和当前节点之间建立边的连接:

private void addEdgeInternal(Integer upStreamVertexID,
            Integer downStreamVertexID,
            int typeNumber,
            StreamPartitioner<?> partitioner,
            List<String> outputNames,
            OutputTag outputTag) {

        //先判断是不是虚拟节点上的边,如果是,则找到虚拟节点上游对应的物理节点
        //在两个物理节点之间添加边,并把对应的 StreamPartitioner,或者 OutputTag 等补充信息添加到StreamEdge中
        if (virtualSideOutputNodes.containsKey(upStreamVertexID)) {
            ......
        } else if (virtualPartitionNodes.containsKey(upStreamVertexID)) {
            int virtualId = upStreamVertexID;
            upStreamVertexID = virtualPartitionNodes.get(virtualId).f0;
            if (partitioner == null) {
                partitioner = virtualPartitionNodes.get(virtualId).f1;
            }
            addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, partitioner, outputNames, outputTag);
        } else {

            //两个物理节点
            StreamNode upstreamNode = getStreamNode(upStreamVertexID);
            StreamNode downstreamNode = getStreamNode(downStreamVertexID);

            // If no partitioner was specified and the parallelism of upstream and downstream
            // operator matches use forward partitioning, use rebalance otherwise.
            if (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {
                partitioner = new ForwardPartitioner<Object>();
            } else if (partitioner == null) {
                partitioner = new RebalancePartitioner<Object>();
            }

            if (partitioner instanceof ForwardPartitioner) {
                if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) {
                    throw new UnsupportedOperationException("Forward partitioning does not allow " +
                            "change of parallelism. Upstream operation: " + upstreamNode + " parallelism: " + upstreamNode.getParallelism() +
                            ", downstream operation: " + downstreamNode + " parallelism: " + downstreamNode.getParallelism() +
                            " You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global.");
                }
            }

            //创建 StreamEdge,保留了 StreamPartitioner 等属性
            StreamEdge edge = new StreamEdge(upstreamNode, downstreamNode, typeNumber, outputNames, partitioner, outputTag);

            //分别将StreamEdge添加到上游节点和下游节点
            getStreamNode(edge.getSourceId()).addOutEdge(edge);
            getStreamNode(edge.getTargetId()).addInEdge(edge);
        }
    }

这样通过 StreamNode 和 SteamEdge,就得到了 DAG 中的所有节点和边,以及它们之间的连接关系,拓扑结构也就建立了。

小结
本文简单分析了从 DataStream API 到 StramGraph 的过程。 StreamGraph 是 Flink 任务最接近用户逻辑的 DAG 表示,后面到具体执行的时候还会进行一系列转换,我们在后续的文章中再逐一加以分析。

原始链接 https://blog.jrwang.me/2019/flink-source-code-streamgraph/