第五章 跳跃表

概述

  1. 跳跃表(skiplist)是一种有序数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。跳跃表支持平均O(logN)、最坏O(N)复杂度的节点查找,还可以通过顺序性操作来批量处理节点。在大部分情况下,跳跃表的效率可以和平衡树相媲美,并且因为跳跃表的实现比平衡树要来得更为简单,所以有不少程序都使用跳跃表来代替平衡树。
  2. Redis使用跳跃表作为有序集合键的底层实现之一,如果一个有序集合包含的元素数量比较多,又或者有序集合中元素的成员(member)是比较长的字符串时,Redis就会使用跳跃表来作为有序集合键的底层实现。
  3. Redis只在两个地方用到了跳跃表,一个是实现有序集合键,另一个是在集群节点中用作内部数据结构,除此之外,跳跃表在Redis里面没有其他用途。

跳跃表的实现

  1. Redis的跳跃表由redis.h/zskiplistNode和redis.h/zskiplist两个结构定义,其中zskiplistNode结构用于表示跳跃表节点,而zskiplist结构则用于保存跳跃表节点的相关信息,比如节点的数量,以及指向表头节点和表尾节点的指针等等。
    图片说明

  2. 图5-1展示了一个跳跃表示例,位于图片最左边的是zskiplist结构,该结构包含以下属性:
    ❑header:指向跳跃表的表头节点。
    ❑tail:指向跳跃表的表尾节点。
    ❑level:记录目前跳跃表内,层数最大的那个节点的层数(表头节点的层数不计算在内)。
    ❑length:记录跳跃表的长度,也即是,跳跃表目前包含节点的数量(表头节点不计算在内)。

  3. 位于zskiplist结构右方的是四个zskiplistNode结构,该结构包含以下属性:
    ❑层(level):节点中用L1、L2、L3等字样标记节点的各个层,L1代表第一层,L2代表第二层,以此类推。每个层都带有两个属性:前进指针和跨度。前进指针用于访问位于表尾方向的其他节点,而跨度则记录了前进指针所指向节点和当前节点的距离。在上面的图片中,连线上带有数字的箭头就代表前进指针,而那个数字就是跨度。当程序从表头向表尾进行遍历时,访问会沿着层的前进指针进行。
    ❑后退(backward)指针:节点中用BW字样标记节点的后退指针,它指向位于当前节点的前一个节点。后退指针在程序从表尾向表头遍历时使用。
    ❑分值(score):各个节点中的1.0、2.0和3.0是节点所保存的分值。在跳跃表中,节点按各自所保存的分值从小到大排列。
    ❑成员对象(obj):各个节点中的o1、o2和o3是节点所保存的成员对象。

  4. 跳跃表节点的实现结构体
    图片说明


  • 跳跃表节点的level数组可以包含多个元素,每个元素都包含一个指向其他节点的指针,程序可以通过这些层来加快访问其他节点的速度,一般来说,层的数量越多,访问其他节点的速度就越快。每次创建一个新跳跃表节点的时候,程序都根据幂次定律(power law,越大的数出现的概率越小)随机生成一个介于1和32之间的值作为level数组的大小,这个大小就是层的“高度”。图片说明

  • 前进指针
    每个层都有一个指向表尾方向的前进指针(level[i].forward属性),用于从表头向表尾方向访问节点。
    图片说明
    1)迭代程序首先访问跳跃表的第一个节点(表头),然后从第四层的前进指针移动到表中的第二个节点。
    2)在第二个节点时,程序沿着第二层的前进指针移动到表中的第三个节点。
    3)在第三个节点时,程序同样沿着第二层的前进指针移动到表中的第四个节点。
    4)当程序再次沿着第四个节点的前进指针移动时,它碰到一个NULL,程序知道这时已经到达了跳跃表的表尾,于是结束这次遍历。

  • 跨度
    层的跨度(level[i].span属性)用于记录两个节点之间的距离:❑两个节点之间的跨度越大,它们相距得就越远。❑指向NULL的所有前进指针的跨度都为0,因为它们没有连向任何节点。
    遍历操作只使用前进指针就可以完成了,跨度实际上是用来计算排位(rank)的:在查找某个节点的过程中,将沿途访问过的所有层的跨度累计起来,得到的结果就是目标节点在跳跃表中的排位。
    图片说明

  • 后退指针
    节点的后退指针(backward属性)用于从表尾向表头方向访问节点:跟可以一次跳过多个节点的前进指针不同,因为每个节点只有一个后退指针,所以每次只能后退至前一个节点。
    图5-6用虚线展示了如果从表尾向表头遍历跳跃表中的所有节点:程序首先通过跳跃表的tail指针访问表尾节点,然后通过后退指针访问倒数第二个节点,之后再沿着后退指针访问倒数第三个节点,再之后遇到指向NULL的后退指针,于是访问结束。 图中的BW就是后退指针。

  • 分值和成员
    节点的分值(score属性)是一个double类型的浮点数,跳跃表中的所有节点都按分值从小到大来排序。节点的成员对象(obj属性)是一个指针,它指向一个字符串对象,而字符串对象则保存着一个SDS值。在同一个跳跃表中,各个节点保存的成员对象必须是唯一的,但是多个节点保存的分值却可以是相同的:分值相同的节点将按照成员对象在字典序中的大小来进行排序,成员对象较小的节点会排在前面(靠近表头的方向),而成员对象较大的节点则会排在后面(靠近表尾的方向)。
    图片说明

跳跃表

  1. 仅靠多个跳跃表节点就可以组成一个跳跃表.但通过使用一个zskiplist结构来持有这些节点,程序可以更方便地对整个跳跃表进行处理,比如快速访问跳跃表的表头节点和表尾节点,或者快速地获取跳跃表节点的数量(也即是跳跃表的长度)等信息.
  2. 结构的定义如下。
    图片说明
    图片说明
    header和tail指针分别指向跳跃表的表头和表尾节点,通过这两个指针,程序定位表头节点和表尾节点的复杂度为O(1)。通过使用length属性来记录节点的数量,程序可以在O(1)复杂度内返回跳跃表的长度。level属性则用于在O(1)复杂度内获取跳跃表中层高最大的那个节点的层数量,注意表头节点的层高并不计算在内。

总结

❑跳跃表是有序集合的底层实现之一。
❑Redis的跳跃表实现由zskiplist和zskiplistNode两个结构组成,其中zskiplist用于保存跳跃表信息(比如表头节点、表尾节点、长度),而zskiplistNode则用于表示跳跃表节点。
❑每个跳跃表节点的层高都是1至32之间的随机数。
❑在同一个跳跃表中,多个节点可以包含相同的分值,但每个节点的成员对象必须是唯一的。
❑跳跃表中的节点按照分值大小进行排序,当分值相同时,节点按照成员对象的大小进行排序。

第六章 整数集合

概述

  1. 整数集合(intset)是集合键的底层实现之一,当一个集合只包含整数值元素,并且这个集合的元素数量不多时,Redis就会使用整数集合作为集合键的底层实现。
  2. 整数集合(intset)是Redis用于保存整数值的集合抽象数据结构,它可以保存类型为int16_t、int32_t或者int64_t的整数值,并且保证集合中不会出现重复元素
  3. 结构体
    图片说明
    contents数组是整数集合的底层实现:整数集合的每个元素都是contents数组的一个数组项(item),各个项在数组中按值的大小从小到大有序地排列,并且数组中不包含任何重复项。
    length属性记录了整数集合包含的元素数量,也即是contents数组的长度。虽然intset结构将contents属性声明为int8_t类型的数组,但实际上contents数组并不保存任何int8_t类型的值,contents数组的真正类型取决于encoding属性的值
    图片说明
    图片说明
  4. 不过根据整数集合的升级规则,当向一个底层为int16_t数组的整数集合添加一个int64_t类型的整数值时,整数集合已有的所有元素都会被转换成int64_t类型,所以contents数组保存的四个整数值都是int64_t类型的

升级

  1. 每当我们要将一个新元素添加到整数集合里面,并且新元素的类型比整数集合现有所有元素的类型都要长时,整数集合需要先进行升级(upgrade),然后才能将新元素添加到整数集合里面。
  2. 升级整数集合并添加新元素共分为三步进行:
    1)根据新元素的类型,扩展整数集合底层数组的空间大小,并为新元素分配空间。
    2)将底层数组现有的所有元素都转换成与新元素相同的类型,并将类型转换后的元素放置到正确的位上,而且在放置元素的过程中,需要继续维持底层数组的有序性质不变。
    3)将新元素添加到底层数组里面。
  3. 举例
    图片说明
    图片说明
    升级首先要做的是,根据新类型的长度,以及集合元素的数量(包括要添加的新元素在内),对底层数组进行空间重分配。整数集合目前有三个元素,再加上新元素65535,整数集合需要分配四个元素的空间,因为每个int32_t整数值需要占用32位空间,所以在空间重分配之后,底层数组的大小将是32*4=128位,如图6-5所示。虽然程序对底层数组进行了空间重分配,但数组原有的三个元素1、2、3仍然是int16_t类型,这些元素还保存在数组的前48位里面,所以程序接下来要做的就是将这三个元素转换成int32_t类型,并将转换后的元素放置到正确的位上面,而且在放置元素的过程中,需要维持底层数组的有序性质不变。
    图片说明
    图片说明
    因为每次向整数集合添加新元素都可能会引起升级,而每次升级都需要对底层数组中已有的所有元素进行类型转换,所以向整数集合添加新元素的时间复杂度为O(N)。
  4. 升级之后新元素的摆放位置
    因为引发升级的新元素的长度总是比整数集合现有所有元素的长度都大,所以这个新元素的值要么就大于所有现有元素,要么就小于所有现有元素:
    □ 在新元素小于所有现有元素的情况下,新元素会被放置在底层数组的最开头(索引0);
    □ 在新元素大于所有现有元素的情况下,新元素会被放置在底层数组的最末尾(索引length-1)。

升级的好处

  1. 整数集合的升级策略有两个好处,一个是提升整数集合的灵活性,另一个是尽可能地节约内存。
  2. 因为整数集合可以通过自动升级底层数组来适应新元素,所以我们可以随意地将int16_t、int32_t或者int64_t类型的整数添加到集合中,而不必担心出现类型错误,这种做法非常灵活。
  3. 整数集合现在的做法既可以让集合能同时保存三种不同类型的值,又可以确保升级操作只会在有需要的时候进行,这可以尽量节省内存。例如,如果我们一直只向整数集合添加int16_t类型的值,那么整数集合的底层实现就会一直是int16_t类型的数组,只有在我们要将int32_t类型或者int64_t类型的值添加到集合时,程序才会对数组进行升级。

    降级

  4. 整数集合不支持降级操作,一旦对数组进行了升级,编码就会一直保持升级后的状态。

总结

❑整数集合是集合键的底层实现之一。
❑整数集合的底层实现为数组,这个数组以有序、无重复的方式保存集合元素,在有需要时,程序会根据新添加元素的类型,改变这个数组的类型。
❑升级操作为整数集合带来了操作上的灵活性,并且尽可能地节约了内存。
❑整数集合只支持升级操作,不支持降级操作。