1、解题思路
- 归并排序:归并排序的过程中,可以统计逆序对的数量。在合并两个已排序的子数组时,如果左侧的元素大于右侧的元素,则左侧剩余的所有元素都与该右侧元素构成逆序对。
- 分治策略:将数组不断分成两半,递归处理。在合并时,计算跨子数组的逆序对数量。
- 取模处理:在统计逆序对时,直接对结果进行 mod 1000000007 处理,防止溢出。
2、代码实现
C++
#include <vector>
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param nums int整型vector
* @return int整型
*/
int InversePairs(vector<int>& nums) {
// write code here
if (nums.empty()) {
return 0;
}
vector<int> tmp(nums.size());
return mergeSort(nums, tmp, 0, nums.size() - 1);
}
private:
const int MOD = 1000000007;
int mergeSort(vector<int>& nums, vector<int>& tmp, int left, int right) {
if (left >= right) {
return 0;
}
int mid = left + (right - left) / 2;
int count = (mergeSort(nums, tmp, left, mid) + mergeSort(nums, tmp, mid + 1, right)) % MOD;
count = (count + merge(nums, tmp, left, mid, right)) % MOD;
return count;
}
int merge(vector<int>& nums, vector<int>& tmp, int left, int mid, int right) {
int i = left, j = mid + 1, k = left;
int count = 0;
while (i <= mid && j <= right) {
if (nums[i] <= nums[j]) {
tmp[k++] = nums[i++];
} else {
tmp[k++] = nums[j++];
count = (count + mid - i + 1) % MOD;
}
}
while (i <= mid) {
tmp[k++] = nums[i++];
}
while (j <= right) {
tmp[k++] = nums[j++];
}
for (int i = left; i <= right; ++i) {
nums[i] = tmp[i];
}
return count;
}
};
Java
import java.util.*;
public class Solution {
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param nums int整型一维数组
* @return int整型
*/
public int InversePairs (int[] nums) {
// write code here
if (nums == null || nums.length == 0) return 0;
int[] tmp = new int[nums.length];
return mergeSort(nums, tmp, 0, nums.length - 1);
}
private static final int MOD = 1000000007;
private int mergeSort(int[] nums, int[] tmp, int left, int right) {
if (left >= right) return 0;
int mid = left + (right - left) / 2;
int count = (mergeSort(nums, tmp, left, mid) + mergeSort(nums, tmp, mid + 1, right)) % MOD;
count = (count + merge(nums, tmp, left, mid, right)) % MOD;
return count;
}
private int merge(int[] nums, int[] tmp, int left, int mid, int right) {
int i = left, j = mid + 1, k = left;
int count = 0;
while (i <= mid && j <= right) {
if (nums[i] <= nums[j]) {
tmp[k++] = nums[i++];
} else {
tmp[k++] = nums[j++];
count = (count + mid - i + 1) % MOD;
}
}
while (i <= mid) tmp[k++] = nums[i++];
while (j <= right) tmp[k++] = nums[j++];
for (int idx = left; idx <= right; ++idx) nums[idx] = tmp[idx];
return count;
}
}
3、复杂度分析
- 时间复杂度:
O(n log n)
,归并排序的时间复杂度。 - 空间复杂度:
O(n)
,用于临时存储合并后的数组。