原码
原码就是早期用来表示数字的一种方式: 一个正数,转换为二进制位就是这个正数的原码。负数的绝对值转换成二进制位然后在高位补1就是这个负数的原码
举例说明: int类型的 3 的原码是 11B(B表示二进制位), 在32位机器上占四个字节,那么高位补零就得: 00000000 00000000 00000000 00000011 int类型的 -3 的绝对值的二进制位就是上面的 11B 展开后高位补零就得: 10000000 00000000 00000000 00000011
但是原码有几个缺点,零分两种 +0 和 -0 。很奇怪是吧!还有,在进行不同符号的加法运算或者同符号的减法运算的时候,不能直接判断出结果的正负。你需要将两个值的绝对值进行比较,然后进行加减操作 ,最后符号位由绝对值大的决定。于是反码就产生了。
反码
正数的反码就是原码,负数的反码等于原码除符号位以外所有的位取反
举例说明: int类型的 3 的反码是 00000000 00000000 00000000 00000011 和原码一样没什么可说的 int类型的 -3 的反码是 11111111 11111111 11111111 11111100
除开符号位 所有位 取反
解决了加减运算的问题,但还是有正负零之分,然后就到补码了
补码
正数的补码与原码相同,负数的补码为 其原码除符号位外所有位取反(得到反码了),然后最低位加1.
还是举例说明: int类型的 3 的补码是: 00000000 00000000 00000000 00000011 int类型的 -3 的补码是 11111111 11111111 1111111 11111101
就是其反码加1