04-树7 二叉搜索树的操作集 (30分)
本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};

函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 /
void InorderTraversal( BinTree BT ); /
中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;

BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
    scanf("%d", &X);
    BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
    scanf("%d", &X);
    Tmp = Find(BST, X);
    if (Tmp == NULL) printf("%d is not found\n", X);
    else {
        printf("%d is found\n", Tmp->Data);
        if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
        if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
    }
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
    scanf("%d", &X);
    BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");

return 0;

}
/* 你的代码将被嵌在这里 */

输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

BinTree Insert( BinTree BST, ElementType X ){
   
	if(!BST){
   
		BST=(BinTree)malloc(sizeof(struct TNode));
		BST->Data=X;
		BST->Left=BST->Right=NULL;
	}else{
   
		if(X<BST->Data)
		BST->Left=Insert(BST->Left,X);
		else if(X>BST->Data)
		BST->Right=Insert(BST->Right,X);
	}
	return BST;
}
BinTree Delete( BinTree BST, ElementType X ){
   
	BinTree Tmp;
	if(!BST)
	printf("Not Found\n");
	else{
   
		if(X<BST->Data)
		BST->Left=Delete(BST->Left,X);
		else if(X>BST->Data)
		BST->Right=Delete(BST->Right,X);
		else{
   
			if(BST->Left&&BST->Right){
   
				Tmp=FindMin(BST->Right);
				BST->Data=Tmp->Data;
				BST->Right=Delete(BST->Right,BST->Data);
			}
			else{
   
				Tmp=BST;
				if(!BST->Left)
				BST=BST->Right;
				else
				BST=BST->Left;
				free(Tmp);
			}
		}
	}
	return BST;
}
Position Find( BinTree BST, ElementType X ){
   
	if(!BST||X==BST->Data)
	return BST;
	else if(X<BST->Data)
	return Find(BST->Left,X);
	else if(X>BST->Data)
	return Find(BST->Right,X);
}
Position FindMin( BinTree BST ){
   
	if(BST)
	{
   
		while(BST->Left)
		BST=BST->Left;
	}
	return BST;
}
Position FindMax( BinTree BST ){
   
	if(BST)
	{
   
		while(BST->Right)
		BST=BST->Right;
	}
	return BST;
}