def compressed_col_sparse_matrix(dense_matrix):
vals = []
row_idx = []
cnt = [0 for _ in range(len(dense_matrix[0]) + 1)]
col_ptr = [0 for _ in range(len(dense_matrix[0]) + 1)]
for i in range(len(dense_matrix)):
for j in range(len(dense_matrix[0])):
if dense_matrix[i][j] != 0:
vals.append(dense_matrix[i][j])
row_idx.append(i)
cnt[j+1] += 1
for i in range(1,len(dense_matrix)+1):
tot = 0
for j in range(i+1):
tot += cnt[j]
col_ptr[i] = tot
return vals, row_idx, col_ptr
if __name__ == "__main__":
dense_matrix = eval(input())
vals, row_idx, col_ptr = compressed_col_sparse_matrix(dense_matrix)
print(vals)
print(row_idx)
print(col_ptr)