球型空间产生器


D e s c r i p t i o n \mathcal{Description} Description

有一个球形空间产生器能够在 n n n 维空间中产生一个坚硬的球体。现在,你被困在了这个 n 维球体中,你只知道球面上 n + 1 n+1 n+1 个点的坐标,你需要以最快的速度确定这个 n n n 维球体的球心坐标,以便于摧毁这个球形空间产生器。
n &lt; = 10 n &lt;= 10 n<=10


S o l u t i o n \mathcal{Solution} Solution

题意: 求 n n n维点 O O O( a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an), 使 O O O 距离 球面上 n + 1 n+1 n+1 个点的 距离相等,

使用 式子 表示出来, 即
<mtext>   </mtext> ( a 1 b 1 , 1 ) 2 + ( a 2 b 1 , 2 ) 2 + . . . + ( a n b 1 , n ) 2 = D 2 <mtext>   </mtext> ( a 1 b 2 , 1 ) 2 + ( a 2 b 2 , 2 ) 2 + . . . + ( a n b 2 , n ) 2 = D 2 . . . <mtext>   </mtext> ( a 1 b n + 1 , 1 ) 2 + ( a 2 b n + 1 , 2 ) 2 + . . . + ( a n b n + 1 , n ) 2 = D 2 <mtext>   </mtext> \ \\ (a_1-b_{1,1})^2+(a_2-b_{1,2})^2+...+(a_n-b_{1,n})^2=D^2\\ \ \\ (a_1-b_{2,1})^2+(a_2-b_{2,2})^2+...+(a_n-b_{2,n})^2=D^2\\ . \\ . \\ . \\ \ \\ (a_1-b_{n+1,1})^2+(a_2-b_{n+1,2})^2+...+(a_n-b_{n+1,n})^2=D^2 \\ \ \\  (a1b1,1)2+(a2b1,2)2+...+(anb1,n)2=D2 (a1b2,1)2+(a2b2,2)2+...+(anb2,n)2=D2... (a1bn+1,1)2+(a2bn+1,2)2+...+(anbn+1,n)2=D2 

相邻式子相减消去 D 2 D^2 D2, 得到
<mtext>   </mtext> ( 2 a 1 b 1 , 1 b 2 , 1 ) ( b 2 , 1 b 1 , 1 ) + . . . + ( 2 a n b 1 , n b 2 , n ) ( b 2 , n b 1 , n ) = 0 . . <mtext>   </mtext> \ \\ (2a_1-b_{1,1}-b_{2,1})(b_{2,1}-b_{1,1})+...+(2a_n-b_{1,n}-b_{2,n})(b_{2,n}-b_{1,n})=0\\ . \\ . \\ 略 \\ \ \\  (2a1b1,1b2,1)(b2,1b1,1)+...+(2anb1,nb2,n)(b2,nb1,n)=0.. 

发现已经是一个 线性方程组 了,

系数 A [ i , j ] = 2 ( b [ i + 1 , j ] b [ i , j ] ) A[i,j]=2*(b[i+1,j]-b[i,j]) A[i,j]=2(b[i+1,j]b[i,j])

常数 A [ i , n + 1 ] = <munderover> j = 1 n </munderover> <mtext>   </mtext> ( b [ i , j ] + b [ i + 1 , j ] ) <mtext>   </mtext> <mtext>   </mtext> ( b [ i + 1 , j ] b [ i , j ] ) A[i,n+1]=\sum_{j=1}^n \ (b[i,j] + b[i+1,j])\ *\ (b[i+1,j]-b[i,j]) A[i,n+1]=j=1n (b[i,j]+b[i+1,j])  (b[i+1,j]b[i,j])

于是 高斯消元 O ( N 3 ) O(N^3) O(N3) 求解 .


C o d e \mathcal{Code} Code

#include<bits/stdc++.h>
#define reg register

const int maxn = 15;

int N;
double A[maxn][maxn];
double B[maxn][maxn];

int main(){
        scanf("%d", &N);
        for(reg int i = 1; i <= N+1; i ++)
                for(reg int j = 1; j <= N; j ++) scanf("%lf", &B[i][j]);
        for(reg int i = 1; i <= N; i ++){
                for(reg int j = 1; j <= N; j ++) A[i][j] = 2.0*(B[i+1][j] - B[i][j]);
                A[i][N+1] = 0;
                for(reg int j = 1; j <= N; j ++)
                        A[i][N+1] += (B[i][j]+B[i+1][j])*(B[i+1][j] - B[i][j]);
        } 
        for(reg int i = 1; i <= N; i ++){
                int max_id = i;
                for(reg int j = i+1; j <= N; j ++)
                        if(fabs(A[max_id][i]) < fabs(A[j][i])) max_id = j;
                std::swap(A[i], A[max_id]);
                double tmp = A[i][i];
                for(reg int j = i; j <= N+1; j ++) A[i][j] /= tmp;
                for(reg int j = i+1; j <= N; j ++){
                        tmp = A[j][i];
                        for(reg int k = i; k <= N+1; k ++)
                                A[j][k] -= A[i][k] * tmp;
                }
        }
        for(reg int i = N; i >= 1; i --)
                for(reg int j = i+1; j <= N; j ++) A[i][N+1] -= A[i][j]*A[j][N+1];
        for(reg int i = 1; i <= N; i ++) printf("%.3lf ", A[i][N+1]);
        return 0;
}