GCD
Given 5 integers: a, b, c, d, k, you’re to find x in a…b, y in c…d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you’re only required to output the total number of different number pairs. 
 Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same. 
Yoiu can assume that a = c = 1 in all test cases. 
 Input 
 The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases. 
 Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above. 
 Output 
 For each test case, print the number of choices. Use the format in the example. 
 Sample Input 
 2 
 1 3 1 5 1 
 1 11014 1 14409 9 
 Sample Output 
 Case 1: 9 
 Case 2: 736427
Hint 
 For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+7;
bool vis[maxn];
int prime[maxn],mu[maxn];
int cnt;
void Init(){
    int N=maxn;
    memset(prime,0,sizeof(prime));
    memset(mu,0,sizeof(mu));
    memset(vis,0,sizeof(vis));
    mu[1] = 1;
    cnt = 0;
    for(int i=2; i<N; i++){
        if(!vis[i]){
            prime[cnt++] = i;
            mu[i] = -1;
        }
        for(int j=0; j<cnt&&i*prime[j]<N; j++){
            vis[i*prime[j]] = 1;
            if(i%prime[j]) mu[i*prime[j]] = -mu[i];
            else{
                mu[i*prime[j]] = 0;
                break;
            }
        }
    }
}
void getMu(){
    int N=maxn;
    for(int i=1;i<N;++i){
        int target=i==1?1:0;
        int delta=target-mu[i];
        mu[i]=delta;
        for(int j=2*i;j<N;j+=i)
            mu[j]+=delta;
    }
}
int main()
{
    ios::sync_with_stdio(false);
    int a,b,c,d,k;
    int t,Case=0;
    Init();
    cin>>t;
    while(t--){
        cin>>a>>b>>c>>d>>k;
        cout<<"Case "<<++Case<<": ";
        if(k==0){
            cout<<"0"<<endl;
            continue;
        }
        b/=k,d/=k;
        long long ans1=0,ans2=0;
        long long h = min(d,b);
        for(int i=1;i<=h;i++){
            ans1+=(long long)mu[i]*(b/i)*(d/i);
        }
        for(int i=1;i<=h;i++){
            ans2+=(long long)mu[i]*(h/i)*(h/i);
        }
        cout<<ans1-ans2/2<<endl;
    }
    return 0;
}
 京公网安备 11010502036488号
京公网安备 11010502036488号