A. Favorite Sequence

观察发现前一半大概是2i-1分布,后一半是n-2i分布.然后代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+50;
int a[N],b[N];
int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        int n;cin>>n;
        for(int i=1;i<=n;i++)    cin>>a[i];
        for(int i=1;i<=(n+1)/2;i++)
        {
            b[i*2-1]=a[i];
        }int id=1;
        for(int i=n;i>(n+1)/2;i--)
        {
            b[id<<1]=a[i];
            id++;
        }
        for(int i=1;i<=n;i++)    cout<<b[i]<<' ';
        puts("");
    }
    return 0;
}

B. Last Year's Substring

可以想到只能删一次,答案要么保留在前面,后面,或者前后连接.直接判断一下就可以了.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+50;
int a[N],b[N];
int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        int n;
        cin>>n;
        string s;
        cin>>s;
        if(s[0]=='2'&&s[1]=='0'&&s[2]=='2'&&s[3]=='0')    puts("YES");
        else if(s[n-4]=='2'&&s[n-3]=='0'&&s[n-2]=='2'&&s[n-1]=='0')    puts("YES");
        else if(s[0]=='2'&&s[n-3]=='0'&&s[n-2]=='2'&&s[n-1]=='0')    puts("YES");
        else if(s[0]=='2'&&s[1]=='0'&&s[n-2]=='2'&&s[n-1]=='0')    puts("YES");
        else if(s[0]=='2'&&s[1]=='0'&&s[2]=='2'&&s[n-1]=='0')    puts("YES");
        else puts("NO");
    }
    return 0;
}

C. Unique Number

数据范围很小,直接打表即可得到答案.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+50;
ll a[51]={1,2,3,4,5,6,7,8,9,19,29,39,49,59,69,79,89,189,289,389,489,589,689,789,1789,2789,3789,4789,5789,6789,16789,26789,36789,46789,56789,156789,256789,356789,456789,1456789,2456789,3456789,13456789,23456789,123456789};
int main()
{
    int T;cin>>T;
    while(T--)
    {
        int x;
        cin>>x;
        if(x<46)    cout<<a[x-1]<<endl;
        else        puts("-1");
    }
    return 0;
}

附赠打表代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+50;
int a[N],b[N];
int sum(int x)
{
    int res=0;
    while(x>0)
    {
        res+=(x%10);
        x/=10;
    }return res;
}

bool ck(int x)
{
    bool vis[10];memset(vis,false,sizeof vis);
    while(x>0)
    {
        if(!vis[x%10])    vis[x%10]=true,x/=10;
        else return false;
    }return true;
}
int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        int n;
        cin>>n;int flag=0;
        for(int i=1;i<=2e7;i++)
        {
            if(ck(i)&&(sum(i)==n))
            {
                printf("%d\n",i);
                flag=1;
                break;
            }
        }if(!flag)    puts("-1");
    }
    return 0;
}

D. Add to Neighbour and Remove

枚举可能的前缀作为答案,然后检测答案是不是可行,最后输出即可.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=3e3+50;
ll a[N],sum[N];
int main()
{
    int T;cin>>T;
    while(T--)
    {
        int n;
        scanf("%d",&n);
    //    for(int i=1;i<=n;i++)    sum[i]=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            sum[i]=sum[i-1]+a[i];
        }int ans=n-1;
        for(int i=1;i<=n;i++)
        {
            bool flag=true;int cnt=i-1;
            for(int j=i+1;j<=n;)
            {
                int res=0;
                while(res<sum[i]&&j<=n)    res+=a[j],cnt++,j++;
                cnt--;
            //    if(i==2)    cout<<res<<endl;
                if(res!=sum[i])    {flag=false;break;}
            }//cout<<flag<<endl;
            if(flag)    ans=min(ans,cnt);
        }printf("%d\n",ans);
    }
    return 0;
}

E1. Close Tuples (easy version)

树状数组直接模拟这个取值就好了.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+50;
int n;
int a[N];
int sum[2][N];
int lowbit(int x)
{
    return x&(-x);
}

void add(int pos,int val,int op)
{
    while(pos<=n)
    {
        sum[op][pos]+=val;
        pos+=lowbit(pos);
    }
}

ll query(int pos,int op)
{
    ll res=0;
    while(pos)
    {
        res+=sum[op][pos];
        pos-=lowbit(pos);
    }return res;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            add(a[i],1,1);
        }ll ans=0;
        for(int i=1;i<=n;i++)
        {
            add(a[i],-1,1);
            ans+=(query(min(a[i]+2,n),0)-query(min(a[i]+1,n),0))*(query(min(a[i]+2,n),1)-query(max(a[i]-1,0),1));//2 2 0
            ans+=(query(min(a[i]+1,n),0)-query(min(a[i]+0,n),0))*(query(min(a[i]+2,n),1)-query(max(a[i]-2,0),1));//1 1 -1
            ans+=(query(min(a[i],n),0)-query(max(a[i]-1,0),0))*(query(min(a[i]+2,n),1)-query(max(a[i]-3,0),1));//0 2 -2
            ans+=(query(max(a[i]-1,0),0)-query(max(a[i]-2,0),0))*(query(min(a[i]+1,n),1)-query(max(a[i]-3,0),1));//-1 1 -2
            ans+=(query(max(a[i]-2,0),0)-query(max(a[i]-3,0),0))*(query(min(a[i],n),1)-query(max(a[i]-3,0),1));//-2 
            add(a[i],1,0);
        }printf("%lld\n",ans);
        for(int i=1;i<=n;i++)    add(a[i],-1,0);
    }
    return 0;
}

E2. Close Tuples (hard version)

k只有100,同上暴力即可.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+50;
const int mod=1e9+7;
int n;
int a[N];
int sum[N];
int lowbit(int x)
{
    return x&(-x);
}

void add(int pos,int val)
{
    while(pos<=n)
    {
        sum[pos]+=val;
        pos+=lowbit(pos);
    }
}

ll query(int pos)
{
    ll res=0;
    while(pos)
    {
        res+=sum[pos];
        pos-=lowbit(pos);
    }return res;
}

ll fact[N],ivf[N];
ll qp(ll A,ll B)
{
    ll res=1;
    while(B)
    {
        if(B&1) res=res*A%mod;
        A=A*A%mod;
        B>>=1;
    }
    return res;
}

inline ll C(ll A,ll B)
{
    if(B>A)    return 0;
    return fact[A]%mod*ivf[B]%mod*ivf[A-B]%mod;
}

void init()
{
    fact[1]=1;fact[0]=1;
    for(int i=2;i<=N-5;i++)
    {
        fact[i]=i*fact[i-1]%mod;
    }ivf[N-5]=qp(fact[N-5],mod-2);
    for(int i=N-5;i>=1;i--)
    {
        ivf[i-1]=ivf[i]*i%mod;
    }
}


int main()
{
    int T,m,k;
    scanf("%d",&T);
    init();
    while(T--)
    {
        scanf("%d%d%d",&n,&m,&k);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            add(a[i],1);
        }ll ans=0;
        for(int i=1;i<=n;i++)
        {
            int num=query(i)-query(i-1);
            if(num>=m)    ans+=C(num,m);ans%=mod;
            ll cnt=query(min(i+k,n))-query(i);
            for(int j=1;j<=min(m-1,num);j++)
            {
                ans+=C(num,j)*C(cnt,m-j);
                ans%=mod;
            }
        }printf("%lld\n",ans);
        for(int i=1;i<=n;i++)    add(a[i],-1);
    }
    return 0;
}

F. The Treasure of The Segments

优先队列维护树状数组更新即可.

#include <bits/stdc++.h>
using namespace std;
const int N=1e6+5;
int ls[N];
struct Tree{
    int l,r;
}w[N];

bool cmp(Tree a,Tree b)
{
    if(a.l==b.l)    return a.r<b.r;
    else            return a.l<b.l;
}
int sum[N],n;
int lowbit(int x)    {return x&(-x);}
void add(int pos,int val)
{
    while(pos<=2*n)
    {
        sum[pos]+=val;
        pos+=lowbit(pos);
    }
}

int query(int pos)
{
    int res=0;
    while(pos)
    {
        res+=sum[pos];
        pos-=lowbit(pos);
    }return res;
}
struct Q{
    int l,r;
    friend bool operator<(const Q &A,const Q &B)
   {
       if(A.r==B.r)    return A.l<B.l;
       else         return A.r>B.r;
   }
};

priority_queue<Q>q;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int id=0;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&w[i].l,&w[i].r);
            ls[++id]=w[i].l,ls[++id]=w[i].r;
        }sort(ls+1,ls+1+id);
        int cnt=unique(ls+1,ls+1+id)-ls-1;
        for(int i=1;i<=n;i++)
        {
            w[i].l=lower_bound(ls+1,ls+1+cnt,w[i].l)-ls;
            w[i].r=lower_bound(ls+1,ls+1+cnt,w[i].r)-ls;
        }//离散化区间.
        int ans=0;
        sort(w+1,w+1+n,cmp);
        int l=1,r=1;
        //for(int i=1;i<=n;i++)    cout<<w[i].l<<' '<<w[i].r<<endl;
        for(int i=1;i<=n;i++)//扫描n个区间.
        {
            while(q.size()&&q.top().r<w[i].l&&l<r)    {add(q.top().l,-1),l++;q.pop();}
            while(w[i].r>=w[r].l&&r<=n)    {add(w[r].l,1);q.push({w[r].l,w[r].r}),r++;}
            ans=max(query(w[i].r),ans);
            //cout<<ans<<endl;
        }//while(l<r)    add(w[l].l,-1),l++;
        printf("%d\n",n-ans);
        /*while(q.size())
        {
            cout<<q.top().l<<' '<<q.top().r<<endl;
            q.pop();
        }*/
        while(q.size())    { add(q.top().l,-1),q.pop();}
    }
    return 0;
}
/*
1
6
1 6
3 6
4 4
4 6
5 7
7 7
*/