利用矩阵来求解递推关系问题 矩阵法+快速幂 #include<iostream> using namespace std; void MatrixMultiply(int m1[2][2], int m2[2][2], int res[2][2]) { //实现矩阵的乘法 res[0][0] = m1[0][0] * m2[0][0]%10000 + m1[0][1] * m2[1][0] % 10000; res[0][0] %= 10000; res[0][1] = m1[0][0] * m2[0][1]%10000 + m1[0][1] * m2[1][1] % 10000; res[0][1] %= 10000; res[1][0] = m1[1][0] * m2[0][0]%10000 + m1[1][1] * m2[1][0] % 10000; res[1][0] %= 10000; res[1][1] = m1[1][0] * m2[0][1]%10000 + m1[1][1] * m2[1][1] % 10000; res[1][1] %= 10000; } void MatrixPower(int m1[2][2], int n, int res[2][2]) { if (n == 0) { res[0][0] = 1; res[0][1] = 0; res[1][0] = 0; res[1][1] = 1; } else if (n % 2 == 0) { int temp[2][2]; MatrixPower(m1, n / 2, temp); MatrixMultiply(temp, temp, res); } else { int temp1[2][2]; MatrixPower(m1, n / 2, temp1); int temp2[2][2]; MatrixMultiply(temp1, temp1, temp2); MatrixMultiply(temp2, m1, res); } } int main() { int matrix[2][2]; matrix[1][0] = 1; matrix[1][1] = 0; int a0, a1, p, q, k; cin >> a0 >> a1 >> p >> q >> k; matrix[0][0] = p; matrix[0][1] = q; int res[2][2]; MatrixPower(matrix, k - 1, res); cout << (res[0][0] * a1 % 10000 + res[0][1] * a0 % 10000) % 10000; return 0; }