import numpy as np def jia(vectors, a): return [i + a for i in vectors] def dianji(a,b): if len(a) != len(b): return -1 s = 0 for j in range(len(a)): s += a[j] * b[j] return s def cov(x,y): return dianji(jia(x, -sum(x)/len(x)),jia(y, -sum(y)/len(y))) / (len(x)-1) def calculate_covariance_matrix(vectors): # 补全代码 return [[cov(x,y) for x in vectors] for y in vectors] # 主程序 if __name__ == "__main__": # 输入 ndarrayA = input() # 处理输入 import ast A = ast.literal_eval(ndarrayA) # 调用函数计算 output = calculate_covariance_matrix(A) # 输出结果 print(output)