import numpy as np
def jia(vectors, a):
return [i + a for i in vectors]
def dianji(a,b):
if len(a) != len(b):
return -1
s = 0
for j in range(len(a)):
s += a[j] * b[j]
return s
def cov(x,y):
return dianji(jia(x, -sum(x)/len(x)),jia(y, -sum(y)/len(y))) / (len(x)-1)
def calculate_covariance_matrix(vectors):
# 补全代码
return [[cov(x,y) for x in vectors] for y in vectors]
# 主程序
if __name__ == "__main__":
# 输入
ndarrayA = input()
# 处理输入
import ast
A = ast.literal_eval(ndarrayA)
# 调用函数计算
output = calculate_covariance_matrix(A)
# 输出结果
print(output)