\(1.1.1\)斐波那契循环节

\[gcd(fib_n, fib_m) = fib_{gcd(n, m)} \]

考虑设\(n < m\)\(fib_n = a\)\(fib_{n + 1} = b\),那么对应的有\(fib_{n + 2} = a + b\)\(fib_{n + 3} = a + 2 \times b\)\(fib_{n + 4} = 2 \times a + 3 \times b\),那么可以发现\(fib_i = fib_{i - n - 1} \times a + fib_{i - n} \times b (i > n + 1)\)

那么将\(i = m\)代入得\(fib_m = fib_{m - n - 1} \times a + fib_{m - n} \times b\)

将上式代入\(gcd(fib_n, fib_m)\),得

\[gcd(fib_n, fib_m) = gcd(fib_n, fib_n \times fib_{m - n - 1} + fib_{n + 1} \times fib_{m - n}) \]

根据辗转相除法法,得到\(gcd(fib_n, fib_m) = gcd(fib_n, fib_{n + 1} \times fib_{m - n})\)

接下来证明\(gcd(fib_i, fib_{i + 1}) = 1\)

运用更相减损术,可以得到

\[gcd(fib_i, fib_{i + 1}) \]
\[= gcd(fib_{i + 1} - fib_{i}, fib_i) \]
\[= gcd(fib_{i - 1}, fib_{i}) \]
\[= gcd(fib_1, fib_2) = 1 \]

那么根据这个定理,就可以继续化简上面的式子,得到

\[gcd(fib_n, fib_m) = gcd(fib_n, fib_{m - n}) \]

如此递归下去当\(fib_i = fib_j = gcd(n, m)\)时,就得到了答案,也就是\(fib_{gcd(n, m)}\)

\[Q.E.D. \]