作者:来知晓
公众号:来知晓
刷题交流QQ群:444172041
方法一
本题关键在于考察对二叉树递归思路的写法。个人的思路实现,时间复杂度与方法二相同,但缺点在于代码较为冗余,不够精炼。关键点如下:
节点功能
:每个节点的功能是找到最大值,赋值根节点数值遍历方式
:前序遍历,划分区间,继续递归创建左右子树停止条件
:左右索引越界切换条件
:左下标大于右侧下标,left > right返回值
:void注意
:该思路先有根节点再有子节点,类似于从上往下,本质还没有发挥递归魅力
/** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */
typedef struct treeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
} TreeNode;
int FindMaxValIdx(int *nums, int left, int right)
{
int maxVal = INT_MIN;
int i, idx = 0;
for (i = left; i <= right; i++) {
if (nums[i] > maxVal) {
maxVal = nums[i];
idx = i;
}
}
return idx;
}
void MaxBiTree(TreeNode* root, int *nums, int numsSize, int left, int right)
{
if (left < 0 || right >= numsSize) {
// 已递归到数组的边界处
return; // debug发现,这句判断冗余,在后面处理了异常区间一般不会进入这句
// 除非第一次调用时不符合索引要求
}
int idx = FindMaxValIdx(nums, left, right);
root->val = nums[idx];
printf("%d ", root->val);
if (idx - 1 < left) {
// 出现左右区间异常不会进入递归
root->left = NULL;
printf("null ");
} else {
TreeNode* pLeft = (TreeNode*)malloc(sizeof(TreeNode));
pLeft->val = 0;
pLeft->left = NULL;
pLeft->right = NULL;
root->left = pLeft;
MaxBiTree(root->left, nums, numsSize, left, idx - 1);
}
if (idx + 1 > right) {
// 出现左右区间异常不会进入递归
root->right = NULL;
printf("null ");
return;
}
TreeNode* pRight = (TreeNode*)malloc(sizeof(TreeNode));
pRight->val = 0;
pRight->left = NULL;
pRight->right = NULL;
root->right = pRight;
MaxBiTree(root->right, nums, numsSize, idx + 1, right);
return;
}
struct TreeNode* constructMaximumBinaryTree(int* nums, int numsSize)
{
TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode));
root->val = 0;
root->left = NULL;
root->right = NULL;
MaxBiTree(root, nums, numsSize, 0, numsSize - 1);
return root;
}
方法二
参考了labuladong的实现思路,更精炼,也是对方法一的一个代码优化,但不改变时间复杂度。关键点如下:
节点功能
:每个节点的功能是找到最大值,赋值根节点遍历方式
:前序遍历,划分区间,继续递归创建左右子树,并将返回值赋予当前根节点的左右子节点停止条件
:左下标大于右侧下标,left > right,返回NULL返回值
:节点指针,左右子树的根节点注意
:该思路先有子节点再有根节点,类似于从下往上返回,真正发挥了递归魅力
/** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */
// 闭区间 [left, right]
struct TreeNode* buildMaxTree(int* nums, int left, int right)
{
// base case
if (left > right) return NULL;
struct TreeNode* root = (struct TreeNode *)malloc(sizeof(struct TreeNode));
// 找到最大值做当前的根节点
int i, idx = left, maxVal = nums[left]; // 需同步初始化idx=left
for (i = left + 1; i <= right; i++) {
// 否则会报内存越界
if (nums[i] > maxVal) {
maxVal = nums[i];
idx = i;
}
}
root->val = maxVal;
// 递归调用生成左右子树
root->left = buildMaxTree(nums, left, idx - 1);
root->right = buildMaxTree(nums, idx + 1, right);
return root;
}
struct TreeNode* constructMaximumBinaryTree(int* nums, int numsSize)
{
if (nums == NULL) return NULL;
return buildMaxTree(nums, 0, numsSize - 1);
}