这个模板适用于解决矩阵快速幂的问题:
题目背景:
已知数列ai,满足 ai = x* (ai-1) + y* (ai-2) ,已知x,y,a0,a1,
让你求这个数列的第k项
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 998244353;
struct node{
ll m[2][2];
node(){
memset(m,0,sizeof(m));
}
friend node operator *(node a,node b){
node ans;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
ans.m[i][j] = (a.m[i][k]*b.m[k][j] + ans.m[i][j])%mod;
return ans;
}
friend node pow(node a,ll k){
node ans;
ans.m[0][0] = ans.m[1][1] = 1,ans.m[0][1] = ans.m[1][0] = 0;
while(k){
if(k&1)
ans = ans*a;
a = a*a;
k >>= 1;
}
return ans;
}
};
node a,ans;
ll k;
int main()
{
ll x,y,a0,a1;
cin>>k>>x>>y>>a0>>a1;
k -= 1;
ans.m[0][0] = ans.m[1][1] = 1,ans.m[1][0] = ans.m[0][1] = 0;
a.m[0][0] = x ,a.m[0][1] = y ,a.m[1][0] = 1 ,a.m[1][1] = 0;
ans = pow(a,k);
cout<<(a1*ans.m[0][0] + a0*ans.m[0][1])%mod<<endl;
return 0;
}
如果k大于等于(10^100),,即求ak,那就需要用到十进制快速幂 + 矩阵快速幂
模板:已知数列ai,满足 ai = x* (ai-1) + y* (ai-2) ,已知x,y,a0,a1,
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 998244353;
char s[100005];
struct node{
ll m[2][2];
node(){
memset(m,0,sizeof(m));
}
friend node operator *(node a,node b){
node ans;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
ans.m[i][j] = (a.m[i][k]*b.m[k][j] + ans.m[i][j])%mod;
return ans;
}
friend node pow(node a,ll k)
{
node ans;
ans.m[0][0] = ans.m[1][1] = 1,ans.m[0][1] = ans.m[1][0] = 0;
while(k){
if(k&1)
ans = ans*a;
a = a*a;
k >>= 1;
}
return ans;
}
};
node a,ans;
int main()
{
ll x,y,a0,a1;
cin>>x>>y>>a0>>a1;
scanf("%s",s+1);
int len = strlen(s+1);
ans.m[0][0] = ans.m[1][1] = 1,ans.m[1][0] = ans.m[0][1] = 0;
a.m[0][0] = x ,a.m[0][1] = y ,a.m[1][0] = 1 ,a.m[1][1] = 0;
for(int i=len;i>=1;i--){
ans = ans*pow(a,s[i] - '0');
a = pow(a,10);
}
cout<<(a1*ans.m[1][0] + a0*ans.m[1][1])%mod<<endl;
return 0;
}