动态规划
按照动态规划的思路进行思考,得到状态转移方程:
dp[i][j] = dp[i-1][j-1] + 1
// public String LCS (String str1, String str2) { // // write code here // int[][] dp = new int[str1.length()+1][str2.length()+1]; // int max = 0; // int position = 0; // for (int i = 1; i < str1.length()+1; i++) { // for (int j = 1; j < str2.length()+1; j++) { // if (str1.charAt(i-1) == str2.charAt(j-1)) { // dp[i][j] = dp[i-1][j-1] + 1; // if (dp[i][j] > max) { // max = dp[i][j]; // position = j; // } // } // } // } // return max == 0 ? "-1" : str2.substring(position-max, position); // }
动态规划优化
空间复杂度: O(2m)
时间复杂度: O(mn)
public String LCS (String str1, String str2) { // write code here int l = str1.length() > str2.length() ? str1.length() : str2.length(); int[][] dp = new int[2][l+1]; int max = 0; int position = 0; for (int i = 1; i < str1.length()+1; i++) { for (int j = 1; j < str2.length()+1; j++) { if (str1.charAt(i-1) == str2.charAt(j-1)) { // 获取上一层节点的值 dp[i%2][j] = dp[i%2 == 0 ? 1 : 0][j-1] + 1; if (dp[i%2][j] > max) { max = dp[i%2][j]; position = j; } } else { dp[i%2][j] = 0; } } } return max == 0 ? "-1" : str2.substring(position-max, position); }