<munderover> i = 1 n </munderover> i = n ( n + 1 ) 2 \sum_{i=1}^ni=\frac{n(n+1)}{2} i=1ni=2n(n+1)
<munderover> i = 1 n </munderover> i 2 = 2 n 3 + 3 n 2 + n 6 \sum_{i=1}^ni^2=\frac{2n^3+3n^2+n}{6} i=1ni2=62n3+3n2+n
<munderover> i = 1 n </munderover> i 3 = n 4 + 2 n 3 + n 2 4 \sum_{i=1}^ni^3=\frac{n^4+2n^3+n^2}{4} i=1ni3=4n4+2n3+n2
<munderover> i = 1 n </munderover> i 4 = 6 n 5 + 15 n 4 + 10 n 3 n 30 \sum_{i=1}^ni^4=\frac{6n^5+15n^4+10n^3-n}{30} i=1ni4=306n5+15n4+10n3n


补个证明,以平方和为例,高次类似。

{ <mstyle displaystyle="false" scriptlevel="0"> ( n + 1 ) 3 n 3 = 3 n 2 + 3 n + 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> n 3 ( n 1 ) 3 = 3 ( n 1 ) 2 + 3 ( n 1 ) + 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 2 3 1 3 = 3 1 2 + 3 1 + 1 </mstyle> \begin{cases}(n+1)^3-n^3=3n^2+3n+1 \\ n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 \\ \cdots \\ \cdots \\ 2^3-1^3=3\cdot1^2+3\cdot1+1\end{cases} (n+1)3n3=3n2+3n+1n3(n1)3=3(n1)2+3(n1)+12313=312+31+1

左右分别相加,设 i = 1 n i 2 = X \sum_{i=1}^ni^2=X i=1ni2=X,则有 ( n + 1 ) 3 1 3 = 3 X + 3 n ( n + 1 ) 2 + n (n+1)^3-1^3=3X+3\cdot\frac{n(n+1)}{2}+n (n+1)313=3X+32n(n+1)+n
整理可得 X = 2 n 3 + 3 n 2 + n 6 X=\frac{2n^3+3n^2+n}{6} X=62n3+3n2+n


听说大概还可以用拉格朗日插值法?
博主太菜了,暂时还不会QAQ