一.题目链接:
HDU-6638
二.题目大意:
求稀疏矩阵子矩阵最大和.
三.分析:
离散 x 坐标,枚举 x.
将 的算法优化到了
详见代码.
四.代码实现:
#include <set>
#include <map>
#include <ctime>
#include <queue>
#include <cmath>
#include <stack>
#include <bitset>
#include <vector>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define eps 1e-8
#define lc k * 2
#define rc k * 2 + 1
#define pi acos(-1.0)
#define ll long long
#define ull unsigned long long
using namespace std;
const int M = (int)2e3;
const int mod = 99991;
const int inf = 0x3f3f3f3f;
struct node1
{
int x, y, w;
}s[M + 5];
int len, y[M + 5];
struct node2
{
ll sum, max_sum, max_prefix, max_suffix;
}tree[M * 4 + 5];
bool cmp(node1 a, node1 b)
{
return a.x < b.x;
}
int tofind(int x)
{
return lower_bound(y + 1, y + len + 1, x) - y;
}
void push_up(int k)
{
tree[k].sum = tree[lc].sum + tree[rc].sum;
tree[k].max_sum = max(max(tree[lc].max_sum, tree[rc].max_sum), tree[lc].max_suffix + tree[rc].max_prefix);
tree[k].max_prefix = max(tree[lc].max_prefix, tree[lc].sum + tree[rc].max_prefix);
tree[k].max_suffix = max(tree[rc].max_suffix, tree[rc].sum + tree[lc].max_suffix);
}
void update(int k, int l, int r, int pos, int v)
{
if(l == r)
{
tree[k].max_prefix = tree[k].max_suffix = tree[k].max_sum = tree[k].sum += v;
return;
}
int mid = (l + r) >> 1;
if(pos <= mid)
update(lc, l, mid, pos, v);
else
update(rc, mid + 1, r, pos, v);
push_up(k);
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
len = 0;
int n;
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
{
scanf("%d %d %d", &s[i].x, &s[i].y, &s[i].w);
y[++len] = s[i].y;
}
sort(s + 1, s + n + 1, cmp), sort(y + 1, y + len + 1);
len = unique(y + 1, y + len + 1) - (y + 1);
ll ans = 0;
for(int i = 1; i <= n; ++i)
{
if(i != 1 && s[i].x == s[i - 1].x) continue;///一次性枚举所有 ≥ 此 x 的点.
memset(tree, 0, sizeof(tree));
for(int j = i; j <= n; ++j)
{
update(1, 1, len, tofind(s[j].y), s[j].w);
if(j == n || s[j].x != s[j + 1].x)
///只有当与该 x 相等的点都加进去之后,才统计最大值.
ans = max(ans, tree[1].max_sum);
}
}
printf("%lld\n", ans);
}
return 0;
}