思路
放置多米诺骨牌可以看作与
或
或
或
匹配的过程.
因为与
,
奇偶性不同,可以分成一个二分图.
这样就变成一个二分图匹配问题,能匹配且都不是障碍的两个点之间连边,直接跑匈牙利即可.
代码
#include<bits/stdc++.h> using namespace std; #define i64 long long #define fp( i, b, e ) for ( int i(b), I(e); i <= I; ++i ) #define fd( i, b, e ) for ( int i(b), I(e); i >= I; --i ) #define go( i, b ) for ( int i(b), v(to[i]); i; v = to[i = nxt[i]] ) template<typename T> inline void cmax( T &x, T y ){ x < y ? x = y : x; } template<typename T> inline void cmin( T &x, T y ){ y < x ? x = y : x; } #define getchar() ( p1 == p2 && ( p1 = bf, p2 = bf + fread( bf, 1, 1 << 21, stdin ), p1 == p2 ) ? EOF : *p1++ ) char bf[1 << 21], *p1(bf), *p2(bf); template<typename T> inline void read( T &x ){ char t(getchar()), flg(0); x = 0; for ( ; !isdigit(t); t = getchar() ) flg = t == '-'; for ( ; isdigit(t); t = getchar() ) x = x * 10 + ( t & 15 ); flg ? x = -x : x; } clock_t t_bg, t_ed; const int MAXN = 105; int N, M, mc[MAXN*MAXN]; int hd[MAXN*MAXN], nxt[MAXN*MAXN*2], to[MAXN*MAXN*2], tot; bool v[MAXN][MAXN], vis[MAXN*MAXN]; inline void addedge( int x, int y ){ nxt[++tot] = hd[x], hd[x] = tot, to[tot] = y; } bool DFS( int u ){ go( i, hd[u] ) if ( !vis[v] ){ vis[v] = 1; if ( !mc[v] || DFS(mc[v]) ) return mc[v] = u, 1; } return 0; } int main(){ t_bg = clock(); read(N), read(M); while( M-- ){ int x, y; read(x), read(y), v[x][y] = 1; } fp( i, 1, N ) v[i][0] = v[0][i] = v[i][N + 1] = v[N + 1][i] = 1; fp( i, 1, N ) fp( j, 1, N ) if ( ((i + j + 1) & 1) && !v[i][j] ){ int p((i - 1) * N + j); if ( !v[i][j + 1] ) addedge( p, p + 1 ); if ( !v[i + 1][j] ) addedge( p, p + N ); if ( !v[i][j - 1] ) addedge( p, p - 1 ); if ( !v[i - 1][j] ) addedge( p, p - N ); } int ans(0); fp( i, 1, N ) fp( j, 1, N ) if ( (i + j + 1) & 1 ) memset( vis, 0, sizeof vis ), ans += DFS((i - 1) * N + j); printf( "%d\n", ans ); t_ed = clock(); fprintf( stderr, "\n========info========\ntime : %.3f\n====================\n", (double)( t_ed - t_bg ) / CLOCKS_PER_SEC ); return 0; }