解题思路

  1. 状态定义

    • dp[i][j] 表示将字符串1的前i个字符转换成字符串2的前j个字符所需的最小操作次数
  2. 状态转移

    • 如果当前字符相同:dp[i][j] = dp[i-1][j-1]
    • 如果当前字符不同,取三种操作的最小值:
      • 插入:dp[i][j-1] + 1
      • 删除:dp[i-1][j] + 1
      • 替换:dp[i-1][j-1] + 1
  3. 边界条件

    • dp[i][0] = i(删除i个字符)
    • dp[0][j] = j(插入j个字符)

代码

#include <iostream>
#include <string>
#include <vector>
using namespace std;

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.length();
        int n = word2.length();
        
        // 创建dp数组
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        
        // 初始化边界
        for (int i = 0; i <= m; i++) {
            dp[i][0] = i;
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = j;
        }
        
        // 填充dp数组
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (word1[i-1] == word2[j-1]) {
                    dp[i][j] = dp[i-1][j-1];
                } else {
                    dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1;
                }
            }
        }
        
        return dp[m][n];
    }
};

int main() {
    string word1, word2;
    cin >> word1 >> word2;
    
    Solution solution;
    cout << solution.minDistance(word1, word2) << endl;
    return 0;
}
import java.util.*;

public class Main {
    static class Solution {
        public int minDistance(String word1, String word2) {
            int m = word1.length();
            int n = word2.length();
            
            // 创建dp数组
            int[][] dp = new int[m + 1][n + 1];
            
            // 初始化边界
            for (int i = 0; i <= m; i++) {
                dp[i][0] = i;
            }
            for (int j = 0; j <= n; j++) {
                dp[0][j] = j;
            }
            
            // 填充dp数组
            for (int i = 1; i <= m; i++) {
                for (int j = 1; j <= n; j++) {
                    if (word1.charAt(i-1) == word2.charAt(j-1)) {
                        dp[i][j] = dp[i-1][j-1];
                    } else {
                        dp[i][j] = Math.min(dp[i-1][j-1], 
                                 Math.min(dp[i-1][j], dp[i][j-1])) + 1;
                    }
                }
            }
            
            return dp[m][n];
        }
    }
    
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        String word1 = sc.next();
        String word2 = sc.next();
        
        Solution solution = new Solution();
        System.out.println(solution.minDistance(word1, word2));
    }
}
def min_distance(word1: str, word2: str) -> int:
    m, n = len(word1), len(word2)
    
    # 创建dp数组
    dp = [[0] * (n + 1) for _ in range(m + 1)]
    
    # 初始化边界
    for i in range(m + 1):
        dp[i][0] = i
    for j in range(n + 1):
        dp[0][j] = j
    
    # 填充dp数组
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if word1[i-1] == word2[j-1]:
                dp[i][j] = dp[i-1][j-1]
            else:
                dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
    
    return dp[m][n]

if __name__ == "__main__":
    word1 = input()
    word2 = input()
    print(min_distance(word1, word2))

算法及复杂度

  • 算法:动态规划
  • 时间复杂度:,其中 分别是两个字符串的长度
  • 空间复杂度:,用于存储 数组