from sklearn.linear_model import SGDRegressor import numpy as np import ast def linear_regression_gradient_descent(X, y, alpha, iterations): # 如果 X 已经包含截距列,设置 fit_intercept=False m, n = X.shape theta = np.zeros(n) # 初始化系数为0 for _ in range(iterations): gradient = (1/m) * X.T @ (X @ theta - y) theta -= alpha * gradient return theta.round(4) # 主程序 if __name__ == "__main__": matrix_inputx = input() array_y = input() alpha = input() iterations = input() matrix = np.array(ast.literal_eval(matrix_inputx)) y = np.array(ast.literal_eval(array_y)).reshape(-1) # 一维 alpha = float(alpha) iterations = int(iterations) output = linear_regression_gradient_descent(matrix, y, alpha, iterations) print(output)