给n个单词,判断n个单词能否形成欧拉通路
要先判连通!
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
int book[30], in[30];
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
queue<int>q;
vector<int>v[30];
memset(in, 0, sizeof in);
memset(book, 0, sizeof book);
int n;
int all = 0, maxn = 0;
char s[1005];
scanf("%d", &n);
while (n--)
{
scanf("%s", s);
in[s[0] - 'a']++;
in[s[strlen(s) - 1] - 'a']--;
//vector和book用来判连通
v[s[0] - 'a'].push_back(s[strlen(s) - 1] - 'a');
v[s[strlen(s) - 1] - 'a'].push_back(s[0] - 'a');
book[s[0] - 'a'] = 1;
book[s[strlen(s) - 1] - 'a'] = 1;
}
//判连通
for (int i = 0; i < 30; i++)
{
if (book[i])
{
q.push(i);
book[i] = 0;
break;
}
}
while (!q.empty())
{
int temp = q.front();
q.pop();
for (auto it = v[temp].begin(); it != v[temp].end(); it++)
{
if (book[*it])
{
book[*it] = 0;
q.push(*it);
}
}
}
//不连通
for (int i = 0; i < 26; i++)
{
if (book[i])
{
puts("The door cannot be opened.");
goto qwe;
}
}
//若入度和出度有大于1或者小于-1,则不连通
for (int i = 0; i < 26; i++)
{
if (in[i] > 1 || in[i] < -1)
{
puts("The door cannot be opened.");
goto qwe;
}
all += in[i];
if (in[i] == 1)
maxn++;
}
//总入度和为0,最多只能有一个结点的入度为1,一个结点的出度为-1
if (all == 0 && maxn <= 1)
puts("Ordering is possible.");
else
puts("The door cannot be opened.");
qwe:;
}
}