F、Infinite String Comparision
给出两个字符串a,b,询问的是在无限自循环连接的前提下两个字符串的大小关系
比赛时应付写法,无限循环不可能去真正在无限的时间才可能出答案,那么在一定时间的循环节之内就可以得到答案,也就是说如果你没有很好的办法去证明出正确的解法,那么我们根据题目给出的时间范围和数据输入,在一定的常数内通过游标的方式一直比较两个字符串,如果在一定次数内没有得到谁大谁小那么就直接跳出循环判断相等。否则就判断大小关系,常数可以自己把握。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) inline void write(__int128 x) { if (!x) { putchar('0'); return; } char F[50]; __int128 tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } #define pb push_back #define pll pair<ll,ll> #define INF 0x3f3f3f3f const int mod = 1e9+7; const int maxn = 55; #define stop system("pause") #define PI acos(-1.0) inline ll read(){ ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } int main(){ js; string a,b; bool flag = false; while(cin>>a>>b){ flag = false; int i = 0 , j = 0; int num = 1000*max(a.size(),b.size()); while(num--){ if(a[i] > b[j]){ puts(">");flag = true;break; } else if(a[i] < b[j]){ puts("<");flag = true;break; } else{ i++;j++; if(i == a.size()) i = 0; if(j == b.size()) j = 0; } } if(!flag) puts("="); } }
方法2、来自mutou01的题解,通过一定的证明,运用string类的连接和判断输出答案。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define mk(__x__,__y__) make_pair(__x__,__y__) typedef long long ll; typedef unsigned long long ull; typedef long double ld; const int MOD = 1e9 + 7; const ll INF = 0x3f3f3f3f; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 1e5 + 7; int main() { js; string a, b; while (cin >> a >> b) { if (a + b == b + a) cout << '=' << endl; else if (a + b < b + a) cout << '<' << endl; else cout << '>' << endl; } return 0; }
J、Easy Integration
求 给出n的情况下的答案
// 对这个题目都写出公式来了,逆元和阶乘在MOD下的答案就不用多说了把 #pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) inline void write(__int128 x) { if (!x) { putchar('0'); return; } char F[50]; __int128 tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } #define pb push_back #define pll pair<ll,ll> #define INF 0x3f3f3f3f const int mod = 998244353; const int maxn = 55; #define stop system("pause") #define PI acos(-1.0) inline ll read(){ ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } ll qpow(ll x,ll y){ x %= mod; ll ans = 1; while(y){ if(y&1) ans = ans*x%mod; x = x*x%mod; y >>= 1; } return ans; } ll fac[2000005]; int main(){ fac[0] = 1; for(int i = 1 ; i < 2000005; ++i) fac[i] = fac[i-1]*i%mod; int n; js; while(cin>>n){ cout<<qpow(fac[n],2ll)*qpow(fac[2*n+1],998244351ll)%mod<<endl; } }