A. Pens and Pencils

题意

组数据,每组
一只钢笔可以写次讲座,一只铅笔可以写次绘画课,现在有次讲座,次绘画课,文具盒里面可以存支笔,如果有解满足上完所有课程,则输出解,否则输出-1

题解

判断

B. Rooms and Staircases

题意

有两层房间,每层 个,我们用数对 来表示每个房子,其中 表示第几层, 表示从左向右数第几个

对于房子 ,都与 相连

而在若干个或个位置中,又有一个双向的梯子,具体来说,若在 的位置有一个梯子,则 是相连的

求不重复经过同一个房间的情况下,最多能走过多少个房间?

题解


枚举经过第个格子到达另外一层,那么答案就是

C. The Football Season

题意

Berland capital team比了场比赛,总得分为。已知胜一场得分,平局分,败了分。

答案表示为:表示胜了场,平局场,败了场。使得:

若无方案则输出-1;若有多重方案,输出任意一个即可
The first line contains four integers , , and — the number of games, the number of points the team got, the number of points awarded for winning a match, and the number of points awarded for a draw, respectively. Note that , so the number of points awarded for winning is strictly greater than the number of points awarded for draw.

题解

,显然越小越好。根据,那么越小,越小。较小,而满足条件的,所以枚举即可。也可以在下用同余方程的方法做。

S1

#include<bits/stdc++.h>
typedef long long ll;
inline ll read() {ll x = 0;char ch = getchar(), w = 1;while(ch < '0' || ch > '9') {
if(ch == '-') w = -1;ch = getchar();}while(ch >= '0' && ch <= '9') {x = x * 10 + ch - '0';ch = getchar();
}return x * w;}
void write(ll x) {if(x < 0) putchar('-'), x = -x;if(x > 9) write(x / 10);putchar(x % 10 + '0');}
inline void writeln(ll x) {write(x);puts("");}
using namespace std;



ll n, p, w, d;
//  
int main() {
    n = read(), p = read(), w = read(), d = read();
    ll y = 0;
    while(y < w && (p - y * d) % w) ++y;
    ll x = (p - y * d) / w;
    if(y == w || x + y > n ||x<0) {
        puts("-1");
        return 0;
    }
    printf("%lld %lld %lld\n", x, y, n - x - y);
    return 0;
}

S2

#include<bits/stdc++.h>
typedef long long ll;
inline ll read() {ll x = 0;char ch = getchar(), w = 1;while(ch < '0' || ch > '9') {
if(ch == '-') w = -1;ch = getchar();}while(ch >= '0' && ch <= '9') {x = x * 10 + ch - '0';ch = getchar();
}return x * w;}
void write(ll x) {if(x < 0) putchar('-'), x = -x;if(x > 9) write(x / 10);putchar(x % 10 + '0');}
inline void writeln(ll x) {write(x);puts("");}
using namespace std;



ll n, p, w, d;
//  
ll exgcd(ll a, ll &x, ll b, ll &y) {
    if(b) {
        ll d = exgcd(b, y, a % b, x);
        y -= a / b * x;
        return d;
    } else {
        x = 1;
        y = 0;
        return a;
    }
}
int main() {
    n = read(), p = read(), w = read(), d = read();
    ll x, y;

    ll gd = exgcd(w, x, d, y);
    y = y %w* ((p / gd) % w) %w;
    /*
        y / (w / gd)
    */
    y = (y % (w / gd) + (w / gd)) % (w / gd);
    /*
        wx + dy = p

    */
//    y = (y + w) %w;
//    printf("x=%lld,y=%lld,v=%lld,p=%lld\n",x,y,(d%w*y%w+w)%w, p%w);
    x = (p - y * d) / w;
//    printf("%lld %lld v=%lld\n", x, y, (p-y*d)%w);
    if((p-y*d)%w||x < 0 ||y <0||x+y>n) {
        puts("-1");
        return 0;
    }
    printf("%lld %lld %lld\n", x, y, n - x - y);
    return 0;
}

D. Paint the Tree

题意

有一棵树,有3种颜色,第个节点染成第种颜色的代价是,现在要你求出一种染色方案,使得总代价最小,且对于任意三个相邻的节点,颜色不能相同。输出最小代价与其中一种方案。无解输出

题解

这个树不是链输出
然后枚举第一个点和第二个点的颜色,那么所有的颜色都能确定。

F. Chips

题意

个棋子排成环状,标号为

一开始每个棋子都是黑色或白色的。随后有次操作。操作时,棋子变换的规则如下:我们考虑一个棋子本身以及与其相邻的两个棋子(共3个),如果其中白子占多数,那么这个棋子就变成白子,否则这个棋子就变成黑子。注意,对于每个棋子,在确定要变成什么颜色之后,并不会立即改变颜色,而是等到所有棋子确定变成什么颜色后,所有棋子才同时变换颜色。

对于一个棋子,与其相邻的棋子是。特别地,对于棋子,与其相邻的棋子是;对于棋子,与其相邻的棋子是

如图是在时进行的一次操作。


给你和初始时每个棋子的颜色,你需要求出在次操作后每个棋子的颜色。

题解

B W相间的区间提出来,每执行一次操作,它的两个端点就会变成
对于连续个及以上连续的块,他们是不会变的。

#include<bits/stdc++.h>
typedef long long ll;
inline ll read() {ll x = 0;char ch = getchar(), w = 1;while(ch < '0' || ch > '9') {
if(ch == '-') w = -1;ch = getchar();}while(ch >= '0' && ch <= '9') {x = x * 10 + ch - '0';ch = getchar();
}return x * w;}
void write(ll x) {if(x < 0) putchar('-'), x = -x;if(x > 9) write(x / 10);putchar(x % 10 + '0');}
inline void writeln(ll x) {write(x);puts("");}
using namespace std;


const int N = 2e5 + 666;
int n;
ll k;
char s[N];
int b[N];
int L(int x) {
    return (x - 1 + n) %n;
}
int R(int x) {
    return (x + 1) %n;
}
int cal(int l, int r) {
    if(l <= r) return r - l + 1;
    else return n - r + l - 1;
} 
char st[] = "WB";
#define pa pair<int,int>
#define fi first
#define se second
#define mk make_pair
queue<pa> S;
int main() {
    n = read(), k = read();
    scanf("%s", s);
    for(int i = 0; i < n; ++i) {
        if(s[i] == 'W') b[i] = 0;
        else b[i] = 1;
    }
    int p = 0;
    while(p < n - 1 && b[p] != b[p + 1]) ++p;
    if(b[n - 1] == b[0]) p = n - 1;
    if(b[p] != b[R(p)]) {
        if(k & 1) for(int i = 0; i < n; ++i) putchar(st[b[i] ^ 1]);
        else for(int i = 0; i < n; ++i) putchar(st[b[i]]);
        puts("");
        return 0;
    }
    int q = R(p);
    while(b[q] == b[p] && p != q) q = R(q);

    if(p == q) {
        puts(s);
        return 0;
    }
    q = L(q);
    for(int i = L(p), j; i != q; i = j) {
        if(b[i] != b[R(i)]){

            j = L(i);
            while(b[j] == (b[R(j)] ^ 1)) j = L(j);
            if(R(j) == i) continue;
            S.push(mk(R(R(j)), i));
            if(R(j) == q) j = R(j);
        } else j = L(i);    
    }
    while(!S.empty()) {
        pa now = S.front(); S.pop();
        int l = now.fi;
        int r = now.se;
        if((cal(l, r)+1)/ 2 <= k) {

            int cnt = cal(l, r);
            for(int i = l, j = 0; j < (cnt+1)/2; i = R(i), ++j) b[i] = b[L(l)];
            for(int i = r, j = 0; j < cnt/2; i = L(i), ++j) b[i] = b[R(r)];
        } else {
            int x = l;
            int y = r;
            int cnt = cal(l, r);
            for(int i = 1; i <= (cnt + 1) / 2; ++i) {
                if(i <= k) {
                    b[x] = b[L(l)];
                    b[y] = b[R(r)];

                } else {
                    b[x] ^= (k & 1);
                    if(x != y) b[y] ^= (k & 1);
                }
                    x = R(x);
                    y = L(y);                
            }
        }
    }
    for(int i = 0; i < n; ++i)putchar(st[b[i]]);
    puts("");
    return 0;
}

G. Running in Pairs

题意

找出两个1到n的全排列p和q,使得 尽量大且不超过给定的
n和k

题解

固定数字是,然后考虑改变(这等价的其他形态)
初始也是,若把位置调换答案还是小于等于,那么久调换。
或者调换

#include<bits/stdc++.h>
typedef long long ll;
inline ll read() {ll x = 0;char ch = getchar(), w = 1;while(ch < '0' || ch > '9') {
if(ch == '-') w = -1;ch = getchar();}while(ch >= '0' && ch <= '9') {x = x * 10 + ch - '0';ch = getchar();
}return x * w;}
void write(ll x) {if(x < 0) putchar('-'), x = -x;if(x > 9) write(x / 10);putchar(x % 10 + '0');}
inline void writeln(ll x) {write(x);puts("");}
using namespace std;

const int N = 1e6 + 666;


int n;
ll k, m;
int a[N];
int main() {
    n = read(), k = read();
    m = k;
    k -= (ll)n * (n+1)/2;
    if(k < 0) {
        puts("-1");
        return 0;
    }
    for(int i = 1; i <= n; ++i) a[i] = i;
    for(int i = 1; i <= n / 2; ++i) {
        if(k >= (n - i + 1 - i)) {
            swap(a[n - i + 1], a[i]);
            k -= (n - 2 * i + 1);
        }    else {
            int tmp = i + k;
            swap(a[i], a[tmp]);
            k = 0;
            break;
        }
    }
    writeln(m - k);
    for(int i = 1; i <= n; ++i) printf("%d ", i);
    puts("");
    for(int i = 1; i <= n; ++i) printf("%d ", a[i]);
    return 0;
}