NC13886
题意
给你一颗n(偶数)结点的树,将其分为n/2对,求所有对数相连的路径之和最小为多少?
思路
DFS 数据结构
既然是图论那就先画图吧
左图由于以2号结点为根节点的子树结点数(包括其自身)为3(奇数),那么显然这棵树上一定有个节点要从树外找一个节点相连,那么必须要经过2号结点与其父节点的这条路(2->1)。
右图告诉我们如果能偶数配对的子树则不需要相连。
叶子节点为子树的结点数一定为1显然一定会加上。
DFS求子树的结点数,若结点数为奇数则需要该节点与其父节点相连的这一条边,若为偶数则不需要。
注意:多组数据要每次清空vector数组,然后置于cnt数组不需要memset是因为dfs里面一开始都会赋过1,所以无影响。
#include<bits/stdc++.h> #define fi first #define se second using namespace std; typedef long long ll; typedef pair<ll,ll>P; const double eps = 1e-8; const int NINF = 0xc0c0c0c0; const int INF = 0x3f3f3f3f; const ll mod = 1e9 + 7; const ll maxn = 1e6 + 5; const int N = 1e4 + 5; ll res,n,cnt[N]; vector<P> G[N]; void dfs(ll u,ll fa,ll cost){ cnt[u]=1; for(auto c:G[u]){ ll x=c.fi,y=c.se; if(x==fa) continue;//若为父节点当然不做啦 dfs(x,u,y);//递归求子树的节点数量 cnt[u]+=cnt[x]; } if(cnt[u]&1) res+=cost; } int main(){ ios::sync_with_stdio(false); cin.tie(0); int T;cin>>T; while(T--){ cin>>n;int t=n-1;res=0; for(int i=1;i<=n;i++) G[i].clear(); while(t--){ ll u,v,w; cin>>u>>v>>w; G[u].push_back(P(v,w)); G[v].push_back(P(u,w)); } dfs(1,-1,0); cout<<res<<'\n'; } return 0; }