离散化+并查集
关系的化就是并查集处理,但是数据规模很大,下标到了1e9,所以开不下那么大的并查集数组,那么怎么办,离散化去搞。
我们不需要知道每个数具体多大,只需要知道相对大小,找到这个数就行了。
别用set,常数很大,就用快排+去重。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(vv) (vv).begin(), (vv).end() #define endl "\n" typedef long long ll; typedef unsigned long long ull; typedef long double ld; const ll MOD = 1e9 + 7; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void write(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 1e5 + 7; int x[N], y[N], op[N]; int a[N << 1], fa[N << 1]; int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); } int main() { int T = read(); while (T--) { for (int i = 1; i < N << 1; ++i) fa[i] = i; int n = read(); for (int i = 1; i <= n; ++i) { x[i] = read(), y[i] = read(), op[i] = read(); a[i * 2 - 1] = x[i], a[i * 2] = y[i]; } int m = n << 1; sort(a + 1, a + 1 + m); m = unique(a + 1, a + 1 + m) - a - 1; for (int i = 1; i <= n; ++i) { int dx = lower_bound(a + 1, a + 1 + m, x[i]) - a; int dy = lower_bound(a + 1, a + 1 + m, y[i]) - a; if (op[i]) fa[find(dx)] = find(dy); } int flag = 0; for (int i = 1; i <= n; ++i) { int dx = lower_bound(a + 1, a + 1 + m, x[i]) - a; int dy = lower_bound(a + 1, a + 1 + m, y[i]) - a; if (!op[i] and fa[find(dx)] == fa[find(dy)]) { flag = 1; break; } } if (flag) puts("NO"); else puts("YES"); } return 0; }