import numpy as np
def calculate_covariance_matrix(vectors):
# 补全代码
fist_array = np.array(vectors)
n = fist_array.shape[1]
means = np.mean(fist_array, axis=1, keepdims=True)
center = fist_array - means
return (np.dot(center, center.T)/(n-1)).tolist()
# 主程序
if __name__ == "__main__":
# 输入
ndarrayA = input()
# 处理输入
import ast
A = ast.literal_eval(ndarrayA)
# 调用函数计算
output = calculate_covariance_matrix(A)
# 输出结果
print(output)

京公网安备 11010502036488号