A.The Number of Even Pairs
a,b=map(int,input().split()) print(a*(a-1)//2+b*(b-1)//2)
B.String Palindrome
bool is(string s){ string t=s; reverse(t.begin(),t.end()); return s==t; } int main(){ string s; cin>>s; int n=s.size(); if(is(s)){ if(is(s.substr(0,(n-1)/2))){ if(is(s.substr((n+3)/2-1))){ O("Yes"); }else O("No"); }else O("No"); }else O("No"); }
C.Maximum Volume
L=int(input()) print((L/3)**3)
D.Banned K
int n; int a[N]; ll b[N]; int main(){ //IN cin>>n; ll ans=0; for(int i=0;i++<n;sc("%d",&a[i]),b[a[i]]++); for(int i=1;i<=n;i++){ ans+=b[i]*(b[i]-1)/2; } for(int i=1;i<=n;i++){ pr("%lld\n",ans-(b[a[i]]-1)); } }
E.Dividing Chocolate
二进制枚举行的状态。
#include<bits/stdc++.h> using namespace std; #define me(a,x) memset(a,x,sizeof(a)) #define sc scanf #define pr printf #define IN freopen("in.txt","r",stdin); #define OUT freopen("out.txt","w",stdout); typedef long long ll; typedef unsigned long long ull; const int N=1e6+6; const int mod=1e9+7; template<typename T>int O(T s){cout<<s<<endl;return 0;} template<typename T>void db(T *bg,T *ed){while(bg!=ed)cout<<*bg++<<' ';pr("\n");} template<typename T>void db(vector<T>it){for(auto i:it)cout<<i<<' ';pr("\n");} inline ll mul_64(ll x,ll y,ll c){return (x*y-(ll)((long double)x/c*y)*c+c)%c;} inline ll ksm(ll a,ll b,ll c){ll ans=1;for(;b;b>>=1,a=a*a%c)if(b&1)ans=ans*a%c;return ans;} inline void exgcd(ll a,ll b,ll &x,ll &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=(a/b)*x;} int H,W,K; string s[15]; int _1(int n){ int a=0; while(n)a++,n&=n-1; return a; } int main(){ //IN cin>>H>>W>>K; for(int i=0;i<H;i++)cin>>s[i]; int ans=N; for(int bit=0;bit<(1<<H-1);bit++){ int res=_1(bit); vector<int>v[H+1],sum(H+1,0); for(int j=0;j<W;j++){ int num=0; for(int i=0;i<H;i++){ num+=s[i][j]-'0'; if(bit>>i&1){ v[i].push_back(num); num=0; }else { if(i==H-1)v[i].push_back(num); else v[i].push_back(0); } } } int last=-1; for(int j=0;j<W;j++){ int ma=0; for(int i=0;i<H;i++){ sum[i]+=v[i][j]; ma=max(ma,sum[i]); } if(ma>K){ j--; if(j==last){ res=1e5;break; } last=j;res++; for(int i=0;i<H;i++)sum[i]=0; } } ans=min(ans,res); } O(ans); }
F.Knapsack for All Segments
如果只求区间[1,n]的方案数,就是裸的01背包计数。
现在是每一个区间,考虑对于只选a[i],那么对于区间[1,i]的贡献是i,所以每次dp[0]++,即可。
#include<bits/stdc++.h> using namespace std; #define me(a,x) memset(a,x,sizeof(a)) #define sc scanf #define pr printf #define IN freopen("in.txt","r",stdin); #define OUT freopen("out.txt","w",stdout); typedef long long ll; typedef unsigned long long ull; const int N=1e6+6; const int mod=998244353; template<typename T>int O(T s){cout<<s<<endl;return 0;} template<typename T>void db(T *bg,T *ed){while(bg!=ed)cout<<*bg++<<' ';pr("\n");} template<typename T>void db(vector<T>it){for(auto i:it)cout<<i<<' ';pr("\n");} inline ll mul_64(ll x,ll y,ll c){return (x*y-(ll)((long double)x/c*y)*c+c)%c;} inline ll ksm(ll a,ll b,ll c){ll ans=1;for(;b;b>>=1,a=a*a%c)if(b&1)ans=ans*a%c;return ans;} inline void exgcd(ll a,ll b,ll &x,ll &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=(a/b)*x;} ll dp[3005];; int n,s; int a[N]; int main(){ cin>>n>>s; for(int i=0;i++<n;sc("%d",&a[i])); ll ans=0; for(int i=1;i<=n;i++){ dp[0]++; for(int j=s;j>=a[i];j--){ dp[j]+=dp[j-a[i]]; dp[j]%=mod; } ans+=dp[s]; ans%=mod; } O(ans); }