A.The Number of Even Pairs
a,b=map(int,input().split()) print(a*(a-1)//2+b*(b-1)//2)
B.String Palindrome
bool is(string s){
string t=s;
reverse(t.begin(),t.end());
return s==t;
}
int main(){
string s;
cin>>s;
int n=s.size();
if(is(s)){
if(is(s.substr(0,(n-1)/2))){
if(is(s.substr((n+3)/2-1))){
O("Yes");
}else O("No");
}else O("No");
}else O("No");
}C.Maximum Volume
L=int(input()) print((L/3)**3)
D.Banned K
int n;
int a[N];
ll b[N];
int main(){
//IN
cin>>n;
ll ans=0;
for(int i=0;i++<n;sc("%d",&a[i]),b[a[i]]++);
for(int i=1;i<=n;i++){
ans+=b[i]*(b[i]-1)/2;
}
for(int i=1;i<=n;i++){
pr("%lld\n",ans-(b[a[i]]-1));
}
}E.Dividing Chocolate
二进制枚举行的状态。
#include<bits/stdc++.h>
using namespace std;
#define me(a,x) memset(a,x,sizeof(a))
#define sc scanf
#define pr printf
#define IN freopen("in.txt","r",stdin);
#define OUT freopen("out.txt","w",stdout);
typedef long long ll;
typedef unsigned long long ull;
const int N=1e6+6;
const int mod=1e9+7;
template<typename T>int O(T s){cout<<s<<endl;return 0;}
template<typename T>void db(T *bg,T *ed){while(bg!=ed)cout<<*bg++<<' ';pr("\n");}
template<typename T>void db(vector<T>it){for(auto i:it)cout<<i<<' ';pr("\n");}
inline ll mul_64(ll x,ll y,ll c){return (x*y-(ll)((long double)x/c*y)*c+c)%c;}
inline ll ksm(ll a,ll b,ll c){ll ans=1;for(;b;b>>=1,a=a*a%c)if(b&1)ans=ans*a%c;return ans;}
inline void exgcd(ll a,ll b,ll &x,ll &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=(a/b)*x;}
int H,W,K;
string s[15];
int _1(int n){
int a=0;
while(n)a++,n&=n-1;
return a;
}
int main(){
//IN
cin>>H>>W>>K;
for(int i=0;i<H;i++)cin>>s[i];
int ans=N;
for(int bit=0;bit<(1<<H-1);bit++){
int res=_1(bit);
vector<int>v[H+1],sum(H+1,0);
for(int j=0;j<W;j++){
int num=0;
for(int i=0;i<H;i++){
num+=s[i][j]-'0';
if(bit>>i&1){
v[i].push_back(num);
num=0;
}else {
if(i==H-1)v[i].push_back(num);
else v[i].push_back(0);
}
}
}
int last=-1;
for(int j=0;j<W;j++){
int ma=0;
for(int i=0;i<H;i++){
sum[i]+=v[i][j];
ma=max(ma,sum[i]);
}
if(ma>K){
j--;
if(j==last){
res=1e5;break;
}
last=j;res++;
for(int i=0;i<H;i++)sum[i]=0;
}
}
ans=min(ans,res);
}
O(ans);
}F.Knapsack for All Segments
如果只求区间[1,n]的方案数,就是裸的01背包计数。
现在是每一个区间,考虑对于只选a[i],那么对于区间[1,i]的贡献是i,所以每次dp[0]++,即可。
#include<bits/stdc++.h>
using namespace std;
#define me(a,x) memset(a,x,sizeof(a))
#define sc scanf
#define pr printf
#define IN freopen("in.txt","r",stdin);
#define OUT freopen("out.txt","w",stdout);
typedef long long ll;
typedef unsigned long long ull;
const int N=1e6+6;
const int mod=998244353;
template<typename T>int O(T s){cout<<s<<endl;return 0;}
template<typename T>void db(T *bg,T *ed){while(bg!=ed)cout<<*bg++<<' ';pr("\n");}
template<typename T>void db(vector<T>it){for(auto i:it)cout<<i<<' ';pr("\n");}
inline ll mul_64(ll x,ll y,ll c){return (x*y-(ll)((long double)x/c*y)*c+c)%c;}
inline ll ksm(ll a,ll b,ll c){ll ans=1;for(;b;b>>=1,a=a*a%c)if(b&1)ans=ans*a%c;return ans;}
inline void exgcd(ll a,ll b,ll &x,ll &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=(a/b)*x;}
ll dp[3005];;
int n,s;
int a[N];
int main(){
cin>>n>>s;
for(int i=0;i++<n;sc("%d",&a[i]));
ll ans=0;
for(int i=1;i<=n;i++){
dp[0]++;
for(int j=s;j>=a[i];j--){
dp[j]+=dp[j-a[i]];
dp[j]%=mod;
}
ans+=dp[s];
ans%=mod;
}
O(ans);
}
京公网安备 11010502036488号