【剑指offer】斐波那契数列 --Java实现
1. 递归法
1. 分析
斐波那契数列的标准公式为:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)
根据公式可以直接写出:
2. 代码
public class Solution { public int Fibonacci(int n) { if(n<=1){ return n; } return Fibonacci(n-1) + Fibonacci(n-2); } }
3. 复杂度
时间复杂度:
空间复杂度:
2. 优化递归
1. 分析
递归会重复计算大量相同数据,我们用个数组把结果存起来8!
2. 代码
public class Solution { public int Fibonacci(int n) { int ans[] = new int[40]; ans[0] = 0; ans[1] = 1; for(int i=2;i<=n;i++){ ans[i] = ans[i-1] + ans[i-2]; } return ans[n]; } }
3. 复杂度:
时间复杂度:
空间复杂度:
3. 优化存储
1. 分析
其实我们可以发现每次就用到了最近的两个数,所以我们可以只存储最近的两个数
- sum 存储第 n 项的值
- one 存储第 n-1 项的值
- two 存储第 n-2 项的值
2. 代码
public class Solution { public int Fibonacci(int n) { if(n == 0){ return 0; }else if(n == 1){ return 1; } int sum = 0; int two = 0; int one = 1; for(int i=2;i<=n;i++){ sum = two + one; two = one; one = sum; } return sum; } }
3. 复杂度:
时间复杂度:
空间复杂度:
4. 持续优化
1. 分析
观察上一版发现,sum 只在每次计算第 n 项的时候用一下,其实还可以利用 sum 存储第 n-1 项,例如当计算完 f(5) 时 sum 存储的是 f(5) 的值,当需要计算 f(6) 时,f(6) = f(5) + f(4),sum 存储的 f(5),f(4) 存储在 one 中,由 f(5)-f(3) 得到
如图:
2. 代码
public class Solution { public int Fibonacci(int n) { if(n == 0){ return 0; }else if(n == 1){ return 1; } int sum = 1; int one = 0; for(int i=2;i<=n;i++){ sum = sum + one; one = sum - one; } return sum; } }
3. 复杂度
时间复杂度:
空间复杂度: