NC13249 黑白树
题目地址:
基本思路:
我们看清楚题中这句话i到根的链上(包括节点i与根)所有与节点i距离小于k[i]的点都会变黑,所以一个子节点只能影响它到根的这一条链,那么我们考虑dfs回溯从叶子节点向上染色。
我们对于每个节点u记录两个变量:mx[u]记录如果选取子树中最优的节点进行操作,从u节点还能向上再染色多少个节点,black[u]记录之前的操作在当前节点上还能再向上影响几个节点;
那么这两个变量如何转移:
- mx[u] = max(k[u],mx[to] - 1)
- black[u] = max(black[u],black[to] - 1)
- 而且当black[u] <= 0 时 black[u] = mx[u],ans++;
通过以上,我们就能很轻松的求出ans,具体可以参考代码;
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false) #define ll long long #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define pdd pair <double, double> #define mp(a, b) make_pair(a, b) #define INF 0x3f3f3f3f inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 1e5 + 10; int n,v; struct Edge{ int to,next; }edge[maxn << 1]; int cnt = 0,head[maxn],k[maxn]; //mx记录选取子节点中最优的节点操作,从当前节点还能向上染色多长; //black记录之前操作在当前节点上还能再向上影响几个节点; int mx[maxn],black[maxn],ans = 0; void add_edge(int u,int v) { edge[++cnt].next = head[u]; edge[cnt].to = v; head[u] = cnt; } void dfs(int u,int par) { black[u] = 0; mx[u] = k[u]; for (int i = head[u]; i != -1; i = edge[i].next) { int to = edge[i].to; if (to == par) continue; dfs(to, u); mx[u] = max(mx[u], mx[to] - 1);//每向上走一步,子节点的mx就要减少一; black[u] = max(black[u], black[to] - 1); } if (black[u] <= 0) {//black[u]小于等于0就代表我们要再一次操作了; black[u] = mx[u]; ans++; } } signed main() { IO; cnt = 0; mset(head, -1); cin >> n; rep(i, 2, n) { cin >> v; add_edge(i, v); add_edge(v, i); } rep(i, 1, n) cin >> k[i]; dfs(1, 0); cout << ans << endl; return 0; }