Cometoj出过这题。。
考虑单个点的贡献
(a[i] - a[x]) * (a[i] - a[x]) = a[i] * a[i] - 2 * a[i] * a[x] + a[x] * a[x]
所以里面一共就有(n - 1)个a[i]的平方以及除了a[i]外其他所有数的平方,中间这部分减法就是
2 * (sum - a[i]) * a[i], sum即是所有数字的和。
最后别忘了除2,因为两两之间会算两次。
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; const int N = 1e6 + 10; const int mod = 1e9 + 7; const int INF = 0x3f3f3f3f; const int LINF = 0x3f3f3f3f3f3f3f3f; ll a[N]; ll fpow(ll a, ll b) { ll res = 1; for (; b > 0; b >>= 1) { if (b & 1) res = res * a % mod; a = a * a % mod; } return res; } int main() { #ifdef LOCAL freopen("E:/input.txt", "r", stdin); #endif int n; cin >> n; ll sum = 0, tot = 0; for (int i = 1; i <= n; i++) { cin >> a[i]; sum = (sum + a[i]) % mod; tot = (tot + a[i] * a[i] % mod) % mod; } ll ans = 0; for (int i = 1; i <= n; i++) { ans = (ans + (n - 1) * a[i] % mod * a[i] % mod + (tot - a[i] * a[i] % mod + mod) % mod - 2 * a[i] * (sum - a[i]) % mod + mod) % mod; } cout << ans * fpow(2LL, mod - 2) % mod << endl; return 0; }