分水岭算法
- 距离变换
import cv2 as cv
import numpy as np
def watershed_demo():
""" 前期的处理需要做好 :return: """
# remove noise if any
print(src.shape)
blurred = cv.pyrMeanShiftFiltering(src, 10, 100)
# gray\binary image
# 灰度化
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
# 自动阈值 二值化
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
cv.imshow("binary-image", binary)
# morphology operation 形态学操作
# 核
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
# 开操作 连续两次
mb = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel, iterations=2)
# 膨胀操作
sure_bg = cv.dilate(mb, kernel, iterations=3)
cv.imshow("mor-opt", sure_bg)
# distance transform 距离变换
# 计算方式 掩膜大小
dist = cv.distanceTransform(mb, cv.DIST_L1, 3)
#
dist_output = cv.normalize(dist, 0, 1.0, cv.NORM_MINMAX)
cv.imshow("distance-t", dist_output * 50)
ret, surface = cv.threshold(dist, dist.max() * 0.6, 255, cv.THRESH_BINARY)
surface_fg = np.uint8(surface)
cv.imshow("surface-bin", surface_fg)
unknown = cv.subtract(sure_bg, surface_fg)
# 求取连通区域
ret, markers = cv.connectedComponents(surface_fg)
print('ret= ',ret)
print('markers 类型', type(markers))
# watershed transform
markers = markers + 1
markers[unknown == 255] = 0
# 分水岭
markers = cv.watershed(src, markers=markers)
src[markers == -1] = [0, 0, 255]
cv.imshow("result", src)
src = cv.imread("main.png")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
watershed_demo()
cv.waitKey(0)
cv.destroyAllWindows()
这一部分没有很懂 后面再补上