<center style="color&#58;rgba&#40;0&#44;0&#44;0&#44;&#46;87&#41;&#59;font&#45;family&#58;Lato&#44; &#39;Helvetica Neue&#39;&#44; Arial&#44; Helvetica&#44; sans&#45;serif&#59;font&#45;size&#58;14px&#59;">

小熊吃面

时间限制: 1 Sec   内存限制: 128 MB
</center>

题目描述

小熊Teddy非常爱吃面,每天晚上都要吃很多很多面。小熊晚上准备了泡面和拉面若干碗,但是吃法非常讲究:如果要吃泡面,必须连续吃k碗,不能多也不能少。

小熊吃面少于a碗就会太饿,多于b碗就会太撑,只能吃ab碗之间。请问有多少种吃法。由于答案可能非常大,所以输出时需要模1000000007

输入

第一行有两个整数tk1<=t,k<=100000),代表有t组数据,每次必须连续吃k碗泡面。

接下来t行,每行有两个整数aibi1<=ai<=bi<=100000),代表第i组数据。

输出

输出t行,每行一个整数,代表吃ab碗之间的吃法种数模1000000007

样例输入

3 2
1 3
2 3
4 4

样例输出

6
5
5

提示

k=2时吃1碗面的可能为(L)

k=2时吃2碗面的可能为(LL)(PP)

k=2时吃3碗面的可能为(LLL)(LPP)(PPL),但不能是(PPP)

L代表拉面,P代表泡面。

解题思路

dp题,主要还是找状态转移方程。具体见代码:

#include <stdio.h>
const int MOD = 1000000007;
int dp[100010];
int main() {
    int t, k, a, b, i, sum, m;
    scanf("%d%d", &t, &k);
    m = k;
    while (t--) {
        sum = 0;
        for (i = 1; i < k; i++)
            dp[i] = 1;
        dp[k] = 2;
        scanf("%d%d", &a, &b);
        if (m < b) {
            for (i = m + 1; i <= b; i++)
                dp[i] = (dp[i - 1] + dp[i - k]) % MOD;
            m = b;
        }
        for (i = a; i <= b; i++)
            sum = (sum + dp[i]) % MOD;
        printf("%d\n", sum);
    }
    return 0;
}