A.最短路(计算几何)
题解:
先判断两点的最短路是否会跨过圆的范围,如果没有则直接计算两点距离即可,否则最短路就是两点到圆的切线长度加上两个切点间圆弧的长度
#include <bits/stdc++.h>
using namespace std;
double dis(double x1, double y1, double x2, double y2)
{
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
int main()
{
double x1, y1, x2, y2, x3, y3, r, ans = 0;
cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3 >> r;
double d1 = dis(x1, y1, x2, y2), d2 = dis(x1, y1, x3, y3), d3 = dis(x2, y2, x3, y3);
double e1 = acos(r / d2), e2 = acos(r / d3);
double e3 = acos((d2 * d2 + d3 * d3 - d1 * d1) / (2 * d2 * d3));
if (e1 + e2 > e3)
{
printf("%.6f\n", d1);
return 0;
}
ans = sqrt(d2 * d2 - r * r) + sqrt(d3 * d3 - r * r) + (e3 - e1 - e2) * r;
printf("%.6f\n", ans);
return 0;
} B.组队(滑动窗口)
题解:
首先将所有人按照能力值排序,然后维护一个最大能力值与最小能力值的差值小于等于的滑动窗口即可
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn = 2e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
ll a[maxn];
void solve()
{
ll n, k;
scanf("%lld%lld", &n, &k);
for (int i = 0; i < n; i++)
scanf("%lld", &a[i]);
sort(a, a + n);
int l = 0, ans = 1;
for (int r = 1; r < n; r++)
{
while (a[r] - a[l] > k)
l++;
ans = max(ans, r - l + 1);
}
printf("%d\n", ans);
}
int main()
{
int t;
for (scanf("%d", &t); t >= 1; t--)
solve();
} C.十面埋伏(bfs)
题解:
只需要对士兵外围 bfs 一下,然后对所有 bfs 到的节点,判断他周围四个方向是否有士兵,若有士兵,则说明这个点需要放置陷阱
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
char s[1005][1005];
int dir[4][2] = {0, 1, 0, -1, 1, 0, -1, 0};
bool vis[1005][1005];
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%s", s[i] + 1);
queue<pii> q;
q.push({1, 1});
while (!q.empty())
{
pii t = q.front();
q.pop();
for (int i = 0; i < 4; i++)
{
int tx = t.first + dir[i][0];
int ty = t.second + dir[i][1];
if (tx < 1 || tx > n || ty < 1 || ty > m)
continue;
if (s[tx][ty] == '#' || vis[tx][ty])
continue;
vis[tx][ty] = true;
q.push({tx, ty});
}
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (s[i - 1][j] == '#' || s[i + 1][j] == '#' || s[i][j - 1] == '#' || s[i][j + 1] == '#')
{
if (s[i][j] != '#' && vis[i][j] == true)
s[i][j] = '*';
}
putchar(s[i][j]);
}
puts("");
}
return 0;
} D.牛妹吃豆子(二位前缀和)
题解:
首先用二维差分算出每个点的豆子数,再用二位前缀和求出每个询问的结果
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
ll a[2005][2005];
int main()
{
int n, m, k, q;
scanf("%d%d%d%d", &n, &m, &k, &q);
while (k--)
{
int x1, x2, y1, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
a[x1][y1]++;
a[x1][y2 + 1]--;
a[x2 + 1][y1]--;
a[x2 + 1][y2 + 1]++;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + a[i][j];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + a[i][j];
while (q--)
{
int x1, x2, y1, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
printf("%lld\n", a[x2][y2] - a[x1 - 1][y2] - a[x2][y1 - 1] + a[x1 - 1][y1 - 1]);
}
return 0;
} E.旅旅旅游(最短路)
题解:
先求出以为起点单源最短路和以
为起点的单源最短路,然后判断每一条边是否在最短路上,如果不在就用并查集来维护,若所有点都在一个集合内,则可以将所有城市走一遍
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, int> pli;
const int maxn = 1e5 + 5;
const int MAXN = 5e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 998244353;
vector<pii> G[maxn];
ll d1[maxn], d2[maxn];
int n, m, u[MAXN], v[MAXN], c[MAXN];
bool vis[maxn];
int fa[maxn];
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
void dij(int s, ll d[], vector<pii> G[])
{
for (int i = 1; i <= n; i++)
d[i] = 1e18, vis[i] = 0;
priority_queue<pli> q;
q.push({0, s});
d[s] = 0;
while (!q.empty())
{
int u = q.top().second;
q.pop();
if (vis[u])
continue;
vis[u] = 1;
for (auto it : G[u])
{
int v = it.first, w = it.second;
if (d[v] > d[u] + w)
{
d[v] = d[u] + w;
q.push({-d[v], v});
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
fa[i] = i;
for (int i = 1; i <= m; i++)
{
scanf("%d%d%d", &u[i], &v[i], &c[i]);
G[u[i]].push_back({v[i], c[i]});
G[v[i]].push_back({u[i], c[i]});
}
dij(1, d1, G), dij(n, d2, G);
for (int i = 1; i <= m; i++)
{
if (d1[u[i]] + d2[v[i]] + c[i] == d1[n] || d1[v[i]] + d2[u[i]] + c[i] == d1[n])
continue;
int x = find(u[i]), y = find(v[i]);
fa[x] = y;
}
int cnt = 0;
for (int i = 1; i <= n; i++)
if (i == find(i))
cnt++;
puts((cnt == 1) ? "YES" : "NO");
return 0;
} F.斗兽棋(签到)
题解:
模拟即可
#include <bits/stdc++.h>
using namespace std;
int main()
{
string s, d;
cin >> d >> s;
if (s == "elephant" && d == "tiger" || s == "tiger" && d == "cat" || s == "cat" && d == "mouse" || s == "mouse" && d == "elephant")
puts("tiangou txdy");
else
puts("tiangou yiwusuoyou");
return 0;
} G.做题(签到)
题解:
贪心,将花费时间排序,每次拿时间最少的即可
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn = 5e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 998244353;
ll a[maxn];
int main()
{
ll n, m;
scanf("%lld%lld", &n, &m);
for (int i = 0; i < n; i++)
scanf("%lld", &a[i]);
sort(a, a + n);
ll ans = 0;
for (int i = 0; i < n; i++)
{
if (a[i] > m)
break;
m -= a[i];
ans++;
}
printf("%lld\n", ans);
return 0;
} H.人人都是好朋友(并查集)
题解:
考虑先将所有的朋友关系利用并查集放在同一个集合中,再判断具有敌人关系的两个人是否在同一个朋友集合中即可。由于数据范围过大,要对数据离散化
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn = 2e6 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
int fa[maxn];
int a[maxn], b[maxn], c[maxn], d[maxn];
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
void solve()
{
int n, cnt = 0;
scanf("%d", &n);
for (int i = 1; i <= 2 * n; i++)
fa[i] = i;
for (int i = 1; i <= n; i++)
{
scanf("%d %d %d", &a[i], &b[i], &c[i]);
d[++cnt] = a[i];
d[++cnt] = b[i];
}
sort(d + 1, d + cnt + 1);
int m = unique(d + 1, d + cnt + 1) - (d + 1);
int flag = 1;
for (int i = 1; i <= n; i++)
{
int x = lower_bound(d + 1, d + m + 1, a[i]) - d;
int y = lower_bound(d + 1, d + m + 1, b[i]) - d;
int u = find(x);
int v = find(y);
if (u != v && c[i] == 1)
fa[u] = v;
else if (u == v && c[i] == 0)
flag = 0;
}
puts(flag ? "YES" : "NO");
}
int main()
{
int t;
for (scanf("%d", &t); t >= 1; t--)
solve();
} I.求和(dfs序)
题解:
dfs序裸题,先求出dfs序,用线段树单点修改和区间查询即可
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
ll val[maxn], tree[maxn << 2];
int head[maxn], nxt[maxn << 1], to[maxn << 1], cnt;
int tot, in[maxn], out[maxn], id[maxn];
void init()
{
memset(head, -1, sizeof(head));
cnt = tot = 0;
}
void addedge(int u, int v)
{
to[cnt] = v;
nxt[cnt] = head[u];
head[u] = cnt++;
}
void dfs(int u, int fa)
{
in[u] = ++tot;
id[tot] = u;
for (int i = head[u]; ~i; i = nxt[i])
{
int v = to[i];
if (v == fa)
continue;
dfs(v, u);
}
out[u] = tot;
}
void pushup(int rt)
{
tree[rt] = tree[rt << 1] + tree[rt << 1 | 1];
}
void build(int l, int r, int rt)
{
if (l == r)
{
tree[rt] = val[id[l]];
return;
}
int mid = l + r >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
pushup(rt);
}
void update(int rt, int l, int r, int pos, ll v)
{
if (l == r)
{
tree[rt] += v;
return;
}
int mid = l + r >> 1;
if (pos <= mid)
update(rt << 1, l, mid, pos, v);
else
update(rt << 1 | 1, mid + 1, r, pos, v);
pushup(rt);
}
ll query(int rt, int l, int r, int L, int R)
{
if (L <= l && r <= R)
return tree[rt];
int mid = l + r >> 1;
if (R <= mid)
return query(rt << 1, l, mid, L, R);
else if (L > mid)
return query(rt << 1 | 1, mid + 1, r, L, R);
else
return query(rt << 1, l, mid, L, mid) + query(rt << 1 | 1, mid + 1, r, mid + 1, R);
}
int main()
{
init();
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= n; i++)
scanf("%lld", &val[i]);
for (int i = 1; i < n; i++)
{
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs(k, 0);
build(1, n, 1);
while (m--)
{
int op, u;
ll v;
scanf("%d", &op);
if (op == 1)
{
scanf("%d%lld", &u, &v);
update(1, 1, n, in[u], v);
}
else
{
scanf("%d", &u);
printf("%lld\n", query(1, 1, n, in[u], out[u]));
}
}
return 0;
} J.建设道路(前缀和)
题解:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn = 5e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
ll a[maxn];
int main()
{
ll n, sum = 0, sum1 = 0, sum2 = 0;
scanf("%lld", &n);
for (int i = 0; i < n; i++)
{
scanf("%lld", &a[i]);
sum1 = (sum1 + a[i] * a[i]) % mod;
sum2 = (sum2 + sum * a[i]) % mod;
sum = (sum + a[i]) % mod;
}
sum1 = (n - 1ll) * sum1 % mod;
sum2 = 2ll * sum2 % mod;
printf("%lld\n", (sum1 - sum2 + mod) % mod);
return 0;
} 
京公网安备 11010502036488号