f(x)=xx2+1f(x) = \frac{x}{\sqrt{x^2+1}}

f(x)=11+1x2f(x) =\frac{1}{\sqrt{1 + \frac{1}{x^2}}}

12f(x)2=1+1x2\frac{1^2}{f(x)^2}=1+\frac{1}{x^2}

f(f(x))=11+12f(x)2f(f(x)) = \frac{1}{\sqrt{1+\frac{1^2}{f(x)^2}}}

f2(x)=f(f(x))=11+1+1x2f_2(x)=f(f(x)) =\frac{1}{\sqrt{1+1+\frac{1}{x^2}}}

同理计算f3(x)f_3(x)

f2(x)=12+1x2,f3(x)=13+1x2f_2(x) =\frac{1}{\sqrt{2+\frac{1}{x^2}}} ,f_3(x)=\frac{1}{\sqrt{3+\frac{1}{x^2}}}

..... 则fn=1n+1x2f_n=\frac{1}{\sqrt{n+\frac{1}{x^2}}}

注意f1(x)f(x),f0(x)=f(x)f_1(x) \neq f(x) ,f_0(x)=f(x)

double calc(int x , int t){
	return 1.00/sqrt( t + 1.00/x/x);
}
void solve(){
	int x,t;cin>>x>>t;
	cout<<calc(x,t + 1)<<endl;
	
}