题意
给一个长度为1e9的只包含1和-1的数列,1的个数不超过1e7,计算有多少对\((l,r)\)满足\(\sum_{i=l}^r a[i]>0\)
分析
dp求出每段连续的1最右端为右端点的最大子段和和最左端为左端点的最大子段和,可以得出这段1往左或右最远能扩到哪里,将相接的连续1段合并,合并后的每段区间和差值不会超过1e7,每段分别用桶来计数,细节很多要仔细想想..
Code
#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define ll long long
using namespace std;
const int inf=1e7+5;
const int mod=1e9+7;
const int maxn=1e7+10;
const int N=1e7+10;
int n,m;
int l[maxn],r[maxn];
int le[maxn],ri[maxn];
int tr[3*N];
int main(){
//ios::sync_with_stdio(false);
//freopen("in","r",stdin);
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&l[i],&r[i]);
}
int sum=0;
l[0]=r[0]=-1;l[n+1]=r[n+1]=1e9;
for(int i=1;i<=n;i++){
sum+=r[i]-l[i]+1;
if(sum>=l[i+1]-r[i]-1) sum-=l[i+1]-r[i]-1,ri[i]=l[i+1]-1;
else ri[i]=r[i]+sum,sum=0;
}sum=0;
for(int i=n;i>=1;i--){
sum+=r[i]-l[i]+1;
if(sum>=l[i]-r[i-1]-1) sum-=l[i]-r[i-1]-1,le[i]=max(0,l[i]-sum);
else le[i]=max(0,l[i]-sum),sum=0;
}
int mn=inf,mx=inf,pos=0,now=-1;
ll ans=0,ret=0;
for(int i=1;i<=n;i++){
if(now<le[i]){
for(int j=mn;j<=mx;j++) tr[j]=0;
ret=0;
mn=mx=pos=inf;
now=le[i];
tr[inf]=1;
}
while(now<l[i]){
ret-=tr[--pos];
tr[pos]++;
now++;
ans+=ret;
mn=min(mn,pos);
}
while(now<=r[i]){
ret+=tr[pos++];
tr[pos]++;
ans+=ret;
now++;
mx=max(mx,pos);
}
while(now<=ri[i]){
ret-=tr[--pos];
tr[pos]++;
now++;
ans+=ret;
mn=min(mn,pos);
}
}
printf("%lld\n",ans);
return 0;
}