解方程
/*
Author : lifehappy
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e7 + 10, mod = 998244353;
ll prime[N], minnp[N], f[N], cnt, p, q, n;
bool st[N];
ll quick_pow(ll a, int n) {
ll ans = 1;
while(n) {
if(n & 1) ans = ans * a % mod;
a = a * a % mod;
n >>= 1;
}
return ans;
}
void init() {
f[1] = 1;
for(int i = 2; i < N; i++) {
if(!st[i]) {
prime[++cnt] = i;
f[i] = (quick_pow(i, q) - quick_pow(i, p) + mod) % mod;
minnp[i] = 1;
}
for(int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {
st[i * prime[j]] = 1;
if(i % prime[j] == 0) {
minnp[i * prime[j]] = minnp[i] + 1;
f[i * prime[j]] = f[i / quick_pow(prime[j], minnp[i])] * (quick_pow(prime[j], q * (minnp[i * prime[j]])) - quick_pow(prime[j], p + minnp[i] * q) + mod) % mod;
break;
}
minnp[i * prime[j]] = 1;
f[i * prime[j]] = f[i] * f[prime[j]] % mod;
}
}
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n >> p >> q;
init();
ll ans = 0;
for(int i = 1; i <= n; i++) {
ans ^= f[i];
}
cout << ans << "\n";
return 0;
} 
京公网安备 11010502036488号