声明:该页面知识来源:《天勤计算机考研》,此处只是做学后总结。
最大公约数与最小公倍数
求最大公约数需要 欧几里得算法 (辗转相除法)
c为a和b的最大公约数,则a和b的最小公倍数为a*b/c 。
gcd(a,b)=gcd(b,a%d)
当第二个参数为0时,第一个参数就是最大公约数啦!
例题
题目描述:输入两个正整数,求其最大公约数。
code:
#include<iostream>
using namespace std;
int getGcd(int a,int b)
{
if(b==0)
return a;
else
return getGcd(b,a%b);
}
int main()
{
int m,n;
while(cin >> m >> n)
{
int gcd=getGcd(m,n);
cout << gcd << endl;
}
return 0;
}
分数的四则运算
例题
#include<iostream>
using namespace std;
struct Fraction
{
long long up,down;
}
long long getGcd(long long a,long long b)
{
if(b==0)
return a;
else
return getGcd(b,a%b);
}
Fraction reduction(Fraction result)//化简
{
if(result.down < 0)//使符号都附加在分子上,方便后续操作
{
result.up = -result.up;
result.down = -result.down;
}
if(result.up == 0)
result.down = 1;
else
{
long long gcd = getGcd(abs(result.up),abs(result.down));
result.up /= gcd;
result.down /= gcd;
}
return result;
}
Fraction add(Fraction a,Fraction b)
{
Fraction result;
result.up = a.up*b.down+b.up*a.down;
result.down = a.down*b.down;//分母相同,分子交错相乘相加
return reduction(result);
}
Fraction minu(Fraction a, Fraction b)
{
Fraction result;
result.up = a.up*b.down - b.up*a.down;
result.down = a.down*b.down;//分母相乘,分子交错相乘相减
return reduction(result);
}
Fraction multi(Fraction a, Fraction b)
{
Fraction result;
result.up = a.up*b.up;
result.down = a.down*b.down;
return reduction(result);
}
Fraction divide(Fraction a, Fraction b)
{
Fraction result;
result.up = a.up*b.down;
result.down = a.down*b.up;//交错相乘
return reduction(result);
}
void showResult(Fraction r)
{
r = reduction(r);
if(r.up < 0) printf("(");
if(r.down == 1)
printf("%lld", r.up);
else if(abs(r.up) > r.down)
{
printf("%lld %lld/%lld", r.up/r.down,abs(r.up)%r.down,r.down);
}
else
{
printf("%lld/%lld", r.up, r.down);
}
if(r.up < 0) printf(")");
}
int main()
{
Fraction a,b,result;
scanf("%lld/%lld %lld/%lld",&a.up,&a.down,&b.up,&b.down);
showResult(a);
printf("+");
showResult(b);
printf("=");
result = add(a,b);
showResult(result);
printf("\n");
...
return 0;
}
素数
一般方法
int isPrime(int n)
{
for(int i=2; i<=(int)sqrt(1.0*n); ++i)
if(n%i == 0)
return 0;
return 1;
}
更优方法:埃氏筛法。思想:扫描一段数,将第一个数的倍数在数组内划掉。按照同样的方法操作第二、三、四…个数,直到所有数扫描完。剩下的数就是素数。
int findPrime(int n, int prime[])//求n个素数
{
int p[maxSize] = {
0};
int num = 0;
for (int i = 2; i < maxSize; ++i)
{
if(p[i] == 0)
{
prime[num++] = i;
if(num >= n)
break;
for(int j = i+i; j < maxSize; j+=i)//将i的倍数抹掉
p[j] = 1;
}
}
}
大整数的运算
将字符型整数转化为整型整数,并逆置。以此保证个位对齐。
struct bigInt
{
int d[1000];
int len;
}
bitInt change(string str)
{
bigInt bI;
bI.len = str.size();
for(int i=0; i<bI.len; ++i)
bId[i]=0;
for (int i = 0; i < bI.len; ++i)
bI.d[i]=str[bI.len-i-1]-'0';//逆置并转化为整型
return bI;
}
bigInt add(bigInt a, bigInt b)
{
bigInt c;
c.len=0;
int power=0;//用于进位
for (int i = 0; i < a.len||i<b.len; ++i)
{
int temp=a.d[i]+b.d[i]+power;
c.d[c.len++]=temp%10;
power=temp/10;
}
if(power!=0)
c.d[c.len++]=power;
return c;
}
bigInt sub(bigInt a, bigInt b)
{
bigInt c;
c.len=0;
for (int i = 0; i < a.len||i<b.len; ++i)
{
if(a.d[i]<b.d[i])
{
a.d[i+1]--;//高位向地位补1
a.d[i]+=10;
}
c.d[c.len++]=a.d[i]-b.d[i];
}
while(c.len-1>=1 && c.d[c.len-1]==0)
c.len--;//除去高位的0,且至少保留一位0
return c;
}
//大整数与小整数的乘法
bigInt multi(bigInt a, int b)
{
bigInt c;
c.len=0;
int power=0;
for (int i = 0; i < a.len; ++i)
{
int temp=a.d[i]*b+power;
c.d[c,len++]=temp%10;
power=temp/10;
}
while(power!=0)
{
c.d[len++]=power%10;
power/=10;
}
return c;
}
//大整数与小整数除法
bigInt multi(bigInt a, int b, int& r)//r余数
{
bigInt c;
c.len=a.len;
r=0;
for(int i=a.len-1; i>=0; i--)
{
r=r*10+a.d[i];
if(r<b) c.d[i]=0;
else
{
c.d[i]=r/b;
r=r%b;
}
}
while(c.len-1>=1; && c.d[c.len-1]==0)
c.len--;
return c;
}