1.寻宝
我们得到了一副藏宝图,藏宝图显示,在一个迷宫中存在着未被世人发现的宝藏。
迷宫是一个二维矩阵,用一个字符串数组表示。它标识了唯一的入口(用 'S' 表示),和唯一的宝藏地点(用 'T' 表示)。但是,宝藏被一些隐蔽的机关保护了起来。在地图上有若干个机关点(用 'M' 表示),只有所有机关均被触发,才可以拿到宝藏。
要保持机关的触发,需要把一个重石放在上面。迷宫中有若干个石堆(用 'O' 表示),每个石堆都有无限个足够触发机关的重石。但是由于石头太重,我们一次只能搬一个石头到指定地点。
迷宫中同样有一些墙壁(用 '#' 表示),我们不能走入墙壁。剩余的都是可随意通行的点(用 '.' 表示)。石堆、机关、起点和终点(无论是否能拿到宝藏)也是可以通行的。
我们每步可以选择向上/向下/向左/向右移动一格,并且不能移出迷宫。搬起石头和放下石头不算步数。那么,从起点开始,我们最少需要多少步才能最后拿到宝藏呢?如果无法拿到宝藏,返回 -1 。
示例 1:
输入: ["S#O", "M..", "M.T"]
输出:16
解释:最优路线为: S->O, cost = 4, 去搬石头 O->第二行的M, cost = 3, M机关触发 第二行的M->O, cost = 3, 我们需要继续回去 O 搬石头。 O->第三行的M, cost = 4, 此时所有机关均触发 第三行的M->T, cost = 2,去T点拿宝藏。 总步数为16。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/xun-bao
思路一:状态压缩动态规划
class Solution { public: int dx[4] = {1, -1, 0, 0}; int dy[4] = {0, 0, 1, -1}; int n, m; bool inBound(int x, int y) { return x >= 0 && x < n && y >= 0 && y < m; } vector<vector<int>> bfs(int x, int y, vector<string>& maze) { vector<vector<int>> ret(n, vector<int>(m, -1)); ret[x][y] = 0; queue<pair<int, int>> Q; Q.push({x, y}); while (!Q.empty()) { auto p = Q.front(); Q.pop(); int x = p.first, y = p.second; for (int k = 0; k < 4; k++) { int nx = x + dx[k], ny = y + dy[k]; if (inBound(nx, ny) && maze[nx][ny] != '#' && ret[nx][ny] == -1) { ret[nx][ny] = ret[x][y] + 1; Q.push({nx, ny}); } } } return ret; } int minimalSteps(vector<string>& maze) { n = maze.size(), m = maze[0].size(); // 机关 & 石头 vector<pair<int, int>> buttons, stones; // 起点 & 终点 int sx, sy, tx, ty; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (maze[i][j] == 'M') { buttons.push_back({i, j}); } if (maze[i][j] == 'O') { stones.push_back({i, j}); } if (maze[i][j] == 'S') { sx = i, sy = j; } if (maze[i][j] == 'T') { tx = i, ty = j; } } } int nb = buttons.size(); int ns = stones.size(); vector<vector<int>> start_dist = bfs(sx, sy, maze); // 边界情况:没有机关 if (nb == 0) { return start_dist[tx][ty]; } // 从某个机关到其他机关 / 起点与终点的最短距离。 vector<vector<int>> dist(nb, vector<int>(nb + 2, -1)); // 中间结果 vector<vector<vector<int>>> dd(nb); for (int i = 0; i < nb; i++) { vector<vector<int>> d = bfs(buttons[i].first, buttons[i].second, maze); dd[i] = d; // 从某个点到终点不需要拿石头 dist[i][nb + 1] = d[tx][ty]; } for (int i = 0; i < nb; i++) { int tmp = -1; for (int k = 0; k < ns; k++) { int mid_x = stones[k].first, mid_y = stones[k].second; if (dd[i][mid_x][mid_y] != -1 && start_dist[mid_x][mid_y] != -1) { if (tmp == -1 || tmp > dd[i][mid_x][mid_y] + start_dist[mid_x][mid_y]) { tmp = dd[i][mid_x][mid_y] + start_dist[mid_x][mid_y]; } } } dist[i][nb] = tmp; for (int j = i + 1; j < nb; j++) { int mn = -1; for (int k = 0; k < ns; k++) { int mid_x = stones[k].first, mid_y = stones[k].second; if (dd[i][mid_x][mid_y] != -1 && dd[j][mid_x][mid_y] != -1) { if (mn == -1 || mn > dd[i][mid_x][mid_y] + dd[j][mid_x][mid_y]) { mn = dd[i][mid_x][mid_y] + dd[j][mid_x][mid_y]; } } } dist[i][j] = mn; dist[j][i] = mn; } } // 无法达成的情形 for (int i = 0; i < nb; i++) { if (dist[i][nb] == -1 || dist[i][nb + 1] == -1) return -1; } // dp 数组, -1 代表没有遍历到 vector<vector<int>> dp(1 << nb, vector<int>(nb, -1)); for (int i = 0; i < nb; i++) { dp[1 << i][i] = dist[i][nb]; } // 由于更新的状态都比未更新的大,所以直接从小到大遍历即可 for (int mask = 1; mask < (1 << nb); mask++) { for (int i = 0; i < nb; i++) { // 当前 dp 是合法的 if (mask & (1 << i)) { for (int j = 0; j < nb; j++) { // j 不在 mask 里 if (!(mask & (1 << j))) { int next = mask | (1 << j); if (dp[next][j] == -1 || dp[next][j] > dp[mask][i] + dist[i][j]) { dp[next][j] = dp[mask][i] + dist[i][j]; } } } } } } int ret = -1; int final_mask = (1 << nb) - 1; for (int i = 0; i < nb; i++) { if (ret == -1 || ret > dp[final_mask][i] + dist[i][nb + 1]) { ret = dp[final_mask][i] + dist[i][nb + 1]; } } return ret; } }; 作者:LeetCode-Solution 链接:https://leetcode-cn.com/problems/xun-bao/solution/xun-bao-bfs-dp-by-leetcode-solution/ 来源:力扣(LeetCode)