题意:求多边形与圆的面积交
计算方法是叉积
#include<cstdio>
#include<vector>
#include<cmath>
#include<math.h>
#include<string>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<map>
#define PI acos(-1.0)
#define pb push_back
#define F first
#define S second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N=1005;
const int MOD=1e9+7;
const double EPS=1e-10;
int sign(double x) { //三态函数,减少精度问题
return abs(x) < EPS ? 0 : x < 0 ? -1 : 1;
}
struct Point { //点的定义
double x, y;
Point(double x=0.0, double y=0.0) : x(x), y(y) {}
Point operator + (const Point &rhs) const { //向量加法
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const { //向量减法
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (double p) const { //向量乘以标量
return Point(x * p, y * p);
}
Point operator / (double p) const { //向量除以标量
return Point(x / p, y / p);
}
bool operator < (const Point &rhs) const { //点的坐标排序
return x < rhs.x || (x == rhs.x && y < rhs.y);
}
bool operator == (const Point &rhs) const { //判断同一个点
return sign(x - rhs.x) == 0 && sign(y - rhs.y) == 0;
}
};
struct Circle { //圆的定义
Point c; //圆心
double r; //半径
Circle() {}
Circle(Point c, double r) : c(c), r(r) {}
Point point(double a) { //圆上的一点
return Point(c.x+cos(a)*r, c.y+sin(a)*r);
}
};
typedef Point Vector;
Point p[N];
double dot(Vector A,Vector B){
return A.x*B.x+A.y*B.y;
}
double length(Vector A){
return sqrt(dot(A,A));
}
double cross(Vector A,Vector B){
return A.x*B.y-A.y*B.x;
}
double Angle(Vector A,Vector B){
double t=dot(A,B)/length(A)/length(B);
return acos(t);
}
bool on_seg(Point p, Point a, Point b) { //判断点在线段上(不包含端点),两点式
return sign(cross(a-p, b-p)) == 0 && sign(dot(a-p, b-p)) <= 0; //点p是否在线段ab上
}
double CulArea( Point A, Point B,Circle C)
{
Vector OA = A-C.c, OB = B-C.c;
Vector BA = A-B, BC = C.c-B;
Vector AB = B-A, AC = C.c-A;
double DOA = length(OA), DOB = length(OB),DAB = length(AB), r = C.r;
if(sign(cross(OA,OB)) == 0) return 0;
if(sign(DOA-C.r) < 0 && sign(DOB-C.r) < 0) return cross(OA,OB)*0.5;
else if(DOB < r && DOA >= r) {
double x = (dot(BA,BC) + sqrt(r*r*DAB*DAB-cross(BA,BC)*cross(BA,BC)))/DAB;
double TS = cross(OA,OB)*0.5;
return asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB;
}
else if(DOB >= r && DOA < r) {
double y = (dot(AB,AC)+sqrt(r*r*DAB*DAB-cross(AB,AC)*cross(AB,AC)))/DAB;
double TS = cross(OA,OB)*0.5;
return asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB;
}
else if(fabs(cross(OA,OB)) >= r*DAB || dot(AB,AC) <= 0 || dot(BA,BC) <= 0) {
if(dot(OA,OB) < 0){
if(cross(OA,OB) < 0) return (-acos(-1.0)-asin(cross(OA,OB)/DOA/DOB))*r*r*0.5;
else return ( acos(-1.0)-asin(cross(OA,OB)/DOA/DOB))*r*r*0.5;
}
else return asin(cross(OA,OB)/DOA/DOB)*r*r*0.5;
}
else {
double x = (dot(BA,BC)+sqrt(r*r*DAB*DAB-cross(BA,BC)*cross(BA,BC)))/DAB;
double y = (dot(AB,AC)+sqrt(r*r*DAB*DAB-cross(AB,AC)*cross(AB,AC)))/DAB;
double TS = cross(OA,OB)*0.5;
return(asin(TS*(1-x/DAB)*2/r/DOA)+asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1);
}
}
int main(void){
double R;
while(scanf("%lf",&R)==1){
Circle C1=Circle({0,0},R);//圆
int n;
scanf("%d",&n);
double ans=0.0;
for(int i=0;i<n;i++){
double x,y;
scanf("%lf%lf",&x,&y);
p[i]={x,y};
}
for(int i=0;i<n;i++) ans+=CulArea(p[i],p[(i+1)%n],C1);
if(ans<0) ans=-ans;
printf("%.2f\n",ans);
}
return 0;
}