解题思路
这是一道经典的网格路径问题,使用动态规划求解。主要思路是:对于任意点 ,到达它的路径数等于从上方来的路径数加上从左方来的路径数。
代码
#include <iostream>
#include <vector>
using namespace std;
int uniquePaths(int x, int y) {
// 创建动态规划数组
vector<vector<int>> dp(x + 1, vector<int>(y + 1, 0));
// 初始化第一行和第一列
for (int i = 1; i <= x; i++) dp[i][1] = 1;
for (int j = 1; j <= y; j++) dp[1][j] = 1;
// 填充dp数组
for (int i = 2; i <= x; i++) {
for (int j = 2; j <= y; j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[x][y];
}
int main() {
int x, y;
while (cin >> x >> y) {
cout << uniquePaths(x + 1, y + 1) << endl;
}
return 0;
}
import java.util.Scanner;
public class Main {
public static int uniquePaths(int x, int y) {
// 创建动态规划数组
int[][] dp = new int[x + 1][y + 1];
// 初始化第一行和第一列
for (int i = 1; i <= x; i++) dp[i][1] = 1;
for (int j = 1; j <= y; j++) dp[1][j] = 1;
// 填充dp数组
for (int i = 2; i <= x; i++) {
for (int j = 2; j <= y; j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[x][y];
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int x = sc.nextInt();
int y = sc.nextInt();
System.out.println(uniquePaths(x, y));
}
}
}
def unique_paths(x: int, y: int) -> int:
# 创建动态规划数组
dp = [[0] * (y + 1) for _ in range(x + 1)]
# 初始化第一行和第一列
for i in range(1, x + 1):
dp[i][1] = 1
for j in range(1, y + 1):
dp[1][j] = 1
# 填充dp数组
for i in range(2, x + 1):
for j in range(2, y + 1):
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[x][y]
# ACM模式处理输入输出
while True:
try:
x, y = map(int, input().split())
print(unique_paths(x + 1, y + 1))
except EOFError:
break
算法及复杂度
- 时间复杂度:
- 需要填充整个dp数组
- 空间复杂度:
- 需要一个二维数组存储中间结果