import math import numpy as np def single_neuron_model(features, labels, weights, bias): forward = np.dot(features, weights) + bias predictions = 1 / (1 + math.e ** (-forward)) probabilities = [round(p, 4) for p in predictions] mse = round(np.sum((predictions - labels) ** 2) / len(labels), 4) return probabilities, mse if __name__ == "__main__": features = np.array(eval(input())) labels = np.array(eval(input())) weights = np.array(eval(input())) bias = float(input()) print(single_neuron_model(features, labels, weights, bias))