import math
import numpy as np
def single_neuron_model(features, labels, weights, bias):
forward = np.dot(features, weights) + bias
predictions = 1 / (1 + math.e ** (-forward))
probabilities = [round(p, 4) for p in predictions]
mse = round(np.sum((predictions - labels) ** 2) / len(labels), 4)
return probabilities, mse
if __name__ == "__main__":
features = np.array(eval(input()))
labels = np.array(eval(input()))
weights = np.array(eval(input()))
bias = float(input())
print(single_neuron_model(features, labels, weights, bias))