C 小雨坐地铁
题目地址:
基本思路:
这题我们分层建图再跑最短路,对于每条地铁线我们建一层图,依次的两个站之间连双向的权值为b的边,然后对于换乘,我们多建一层的虚点,每条线的每个站到虚点的边设为0,从虚点出去到每条线的每个站的边权值设为a,这样我们就建图完成了,然后再跑一边dijkstra计算答案就好了。
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false) #define ll long long #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define INF 0x3f3f3f3f inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 2050; struct Edge{ int to,val,next; }edge[maxn * maxn*2]; int cnt = 0,head[maxn*maxn]; void add_edge(int u,int v,int w){ edge[++cnt].next = head[u]; edge[cnt].to = v; edge[cnt].val = w; head[u] = cnt; } int n,m,dis[maxn*maxn]; bool vis[maxn*maxn]; void dijkstra(int k){ priority_queue<pair<int,int>,vector<pair<int,int>>,greater<>> q; mset(dis,0x3f3f3f3f); mset(vis,false); dis[k] = 0; q.push(make_pair(0,k)); while (!q.empty()){ int s = q.top().second; q.pop(); if(vis[s]) continue; vis[s] = true; for(int i = head[s];i!=-1;i = edge[i].next){ if(dis[edge[i].to] > dis[s]+edge[i].val){ dis[edge[i].to] = dis[s]+edge[i].val; q.push(make_pair(dis[edge[i].to],edge[i].to)); } } } } int s,t; signed main() { IO; cnt = 0; mset(head,-1); cin >> n >> m >> s >> t; rep(i,1,m){ int a,b,c; cin >> a >> b >> c; int last = -1; rep(j,1,c){ int x; cin >> x; if(last != -1){ //每条地铁线路依次连边; add_edge((i-1)*n+x,(i-1)*n+last,b); add_edge((i-1)*n+last,(i-1)*n+x,b); } //往虚点连边,表示换乘的状态; add_edge((i-1)*n+x,n*m+x,0); add_edge(n*m+x,(i-1)*n+x,a); last = x; } } dijkstra(n*m + s); // rep(i,1,n*m+n) cout << dis[i] << " "; // cout << '\n'; if(dis[n*m + t] == INF) cout << -1 << '\n'; else cout << dis[n*m + t] << '\n'; return 0; }