一、题目描述

给出一个区间的集合,请合并所有重叠的区间。

示例 1:

输入: [[1,3],[2,6],[8,10],[15,18]]
输出: [[1,6],[8,10],[15,18]]
解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

输入: [[1,4],[4,5]]
输出: [[1,5]]
解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。

解题思路 & 代码

我们用数组 merged 存储最终的答案。

  1. 首先,我们将列表中的区间按照左端点升序排序。然后我们将第一个区间加入 merged 数组中,并按顺序依次考虑之后的每个区间:

  2. 如果当前区间的左端点在数组 merged 中最后一个区间的右端点之后,那么它们不会重合,我们可以直接将这个区间加入数组 merged 的末尾;

  3. 否则,它们重合,我们需要用当前区间的右端点更新数组 merged 中最后一个区间的右端点,将其置为二者的较大值。

class Solution:
    def merge(self, intervals: List[List[int]]) -> List[List[int]]:
        intervals.sort(key=lambda x: x[0])

        merged = []
        for interval in intervals:
            # 如果列表为空,或者当前区间与上一区间不重合,直接添加
            if not merged or merged[-1][1] < interval[0]:
                merged.append(interval)
            else:
                # 否则的话,我们就可以与上一区间进行合并
                merged[-1][1] = max(merged[-1][1], interval[1])

        return merged


复杂度分析

  1. 时间复杂度:O(nlogn),其中 n 为区间的数量。除去排序的开销,我们只需要一次线性扫描,所以主要的时间开销是排序的 O(nlogn)。

  2. 空间复杂度:O(logn),其中 n 为区间的数量。这里计算的是存储答案之外,使用的额外空间。O(logn) 即为排序所需要的空间复杂度。

参考:

  1. LeetCode题解