POJ 2018 Best Cow Fences 二分答案,前缀和
题意
给定长度为n的序列,求长度为[m,n]的子序列的最大平均值
思路
简单分析发现本题答案存在单调性,可以采用二分答案的思路
序列中每个值对于平均值的贡献度为
可以到当本序列的时,本平均值avg成立
子序列的长度可以为[m,n-m]的任意数字
我们进行二分时要尽量使
可得前缀和公式
所以序列的
的值为
我们在保持最短长度m的前提下,子序列的前端取贡献度最小的值,也就是令取可取的最小值
即为当
$$
时,当前avg值可行,缩小左区间,否则缩小右区间
注意最后输出卡精度
#include<cstdio>
#include<algorithm>
using namespace std;
#define eps 1e-7
typedef long long ll;
ll n, m;
ll cows[100005];
double contri[100005];
bool check(double x) {
contri[0] = 0;
for (ll i = 1; i <= n; i++) {
contri[i] = contri[i - 1] + cows[i] - x;
}
double mi = 0x3f3f3f3f3f;
ll i = 0;
for (ll j = m; j <= n; j++) {
mi = min(mi, contri[i]);
if (contri[j] - mi >= 0) {
return true;
}
i++;
}
return false;
}
int main(void) {
double left = 0.0, right = 0.0;
scanf("%lld%lld", &n, &m);
for (ll i = 1; i <= n; i++) {
scanf("%lld", cows + i);
right = max(right, (double)cows[i]);
}
double mid;
while (left + eps < right) {
mid = (right + left) / 2.0;
if (check(mid)) {
left = mid;
}
else {
right = mid;
}
}
printf("%.0lf", (right * 1000));
return 0;
} 
京公网安备 11010502036488号