目录

常见面试题

Java基础

语法基础

面向对象特性

  1. 封装-----利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体。数据被保护在抽象数据类型的内部,尽可能地隐藏内部的细节,只保留一些对外接口使之与外部发生联系。用户无需知道对象内部的细节,但可以通过对象对外提供的接口来访问该对象。
  2. 继承----继承实现了 IS-A 关系,例如 Cat 和 Animal 就是一种 IS-A 关系,因此 Cat 可以继承自 Animal,从而获得 Animal 非 private 的属性和方法。继承应该遵循里氏替换原则,子类对象必须能够替换掉所有父类对象。Cat 可以当做 Animal 来使用,也就是说可以使用 Animal 引用 Cat 对象。父类引用指向子类对象称为 向上转型 。
  3. 多态---------多态分为编译时多态和运行时多态---------编译时多态主要指方法的重载-----运行时多态指程序中定义的对象引用所指向的具体类型在运行期间才确定

封装的优点

  1. 减少耦合: 可以独立地开发、测试、优化、使用、理解和修改
  2. 减轻维护的负担: 可以更容易被程序员理解,并且在调试的时候可以不影响其他模块
  3. 有效地调节性能: 可以通过剖析确定哪些模块影响了系统的性能
  4. 提高软件的可重用性
  5. 降低了构建大型系统的风险: 即使整个系统不可用,但是这些独立的模块却有可能是可用的

运行多态的三个条件

  1. 继承
  2. 覆盖(重写)
  3. 向上转型

Java的四种引用

  • 强引用---GC不回收, 最常见的.
  • 弱引用---生命周期短, GC遇到就会回收
  • 虚引用---和引用队列联用, 任何时候都可以回收, 用于跟踪对象被回收的活动.
  • 软引用---内存足,不回收; 内存不足,回收. 用来实现高速缓存.

接口和抽象类的区别

  1. 一个子类只能继承一个抽象类, 但能实现多个接口
  2. 抽象类可以有构造方法, 接口没有构造方法
  3. 抽象类可以有普通成员变量, 接口没有普通成员变量
  4. 抽象类和接口都可有静态成员变量, 抽象类中静态成员变量访问类型任意,接口只能public static final(默认)
  5. 抽象类可以没有抽象方法, 抽象类可以有普通方法;接口在JDK8之前都是抽象方法,在JDK8可以有default方法,在JDK9中允许有私有普通方法
  6. 抽象类可以有静态方法;接口在JDK8之前不能有静态方法,在JDK8中可以有静态方法,且只能被接口类直接调用(不能被实现类的对象调用)
  7. 抽象类中的方法可以是public、protected; 接口方法在JDK8之前只有public abstract,在JDK8可以有default方法,在JDK9中允许有private方法

值传递和引用传递的区别

  1. 值传递是传递变量的值, 并不会改变方法外的变量; 引用传递是传递对象的地址, 会改变对象本身的值;
  2. 值传递的形式参数类型是基本数据类型, 引用传递形式参数类型是引用数据类型参数.
  3. 值传递方法调用时, 实际参数把它的值传递给对应的形式参数, 形式参数只是用实际参数的值初始化自己的存储单元内容, 是两个不同的存储单元;引用传递方法调用时, 实际参数是对象(或数组), 这时实际参数与形式参数指向同一个地址, 在方法执行中, 对形式参数的操作实际上就是对实际参数的操作, 这个结果在方法结束后被保留了下来.

重载和重写中的区别

  1. 重载发生在本类, 编译器绑定; 重写发生在父类, 运行期绑定.
  2. 被final修饰的方法不能被重写, 但是可以被重载.
  3. 重写是子类重写父类的方法; 重载是一个类有多个同名不同参数的方法.

成员变量与局部变量的区别有那些?

  1. 从语法形式上,看成员变量是属于类的,而局部变量是在方法中定义的变量或是方法的参数;成员变量可以被public,private,static等修饰符所修饰,而局部变量不能被访问控制修饰符及static所修饰;但是,成员变量和局部变量都能被final所修饰;
  2. 从变量在内存中的存储方式来看,成员变量是对象的一部分,而对象存在于堆内存,局部变量存在于栈内存
  3. 从变量在内存中的生存时间上看,成员变量是对象的一部分,它随着对象的创建而存在,而局部变量随着方法的调用而自动消失。
  4. 成员变量如果没有被赋初值,则会自动以类型的默认值而赋值(一种情况例外被final修饰但没有被static修饰的成员变量必须显示地赋值);而局部变量则不会自动赋值。

super与this的区别

super用来引用父类的成分,不能操作到本类的属性和方法;能操作到父类的能被父类访问修饰符允许的属性和方法,只有当本类中调用被重写前的效果时使用super的方法.调用super()必须写在子类构造方法的第一行, 否则编译不通过

this用来引用当前的对象, 能够操作当前类里的所有属性及方法,以及当父类继承而来能被访问修饰符允许访问的属性和方法.

本质this指向本对象的指针; super是一个关键字.

什么是JDK?什么是JRE?什么是JVM?三者之间的联系与区别

这几个是Java中很基本很基本的东西,但是我相信一定还有很多人搞不清楚!为什么呢?因为我们大多数时候在使用现成的编译工具以及环境的时候,并没有去考虑这些东西。

JDK: 顾名思义它是给开发者提供的开发工具箱,是给程序开发者用的。它除了包括完整的JRE(Java Runtime Environment),Java运行环境,还包含了其他供开发者使用的工具包。

JRE: 普通用户而只需要安装JRE(Java Runtime Environment)来运行Java程序。而程序开发者必须安装JDK来编译、调试程序。

JVM: 当我们运行一个程序时,JVM负责将字节码转换为特定机器代码,JVM提供了内存管理/垃圾回收和安全机制等。这种独立于硬件和操作系统,正是java程序可以一次编写多处执行的原因。

区别与联系:

  1. JDK用于开发,JRE用于运行java程序 ;
  2. JDK和JRE中都包含JVM ;
  3. JVM是java编程语言的核心并且具有平台独立性。

接口和抽象类的区别是什么?

  1. 接口的方法默认是public,所有方法在接口中不能有实现,抽象类可以有非抽象的方法
  2. 接口中的实例变量默认是final类型的,而抽象类中则不一定
  3. 一个类可以实现多个接口,但最多只能实现一个抽象类
  4. 一个类实现接口的话要实现接口的所有方法,而抽象类不一定
  5. 接口不能用new实例化,但可以声明,但是必须引用一个实现该接口的对象 从设计层面来说,抽象是对类的抽象,是一种模板设计,接口是行为的抽象,是一种行为的规范。

注意:Java8 后接口可以有默认实现( default )。

重载和重写的区别

重载: 发生在同一个类中,方法名必须相同,参数类型不同、个数不同、顺序不同,方法返回值和访问修饰符可以不同,发生在编译时。   

重写: 发生在父子类中,方法名、参数列表必须相同,返回值范围小于等于父类,抛出的异常范围小于等于父类,访问修饰符范围大于等于父类;如果父类方法访问修饰符为private则子类就不能重写该方法。

字符型常量和字符串常量的区别

  1. 形式上: 字符常量是单引号引起的一个字符 字符串常量是双引号引起的若干个字符
  2. 含义上: 字符常量相当于一个整形值(ASCII值),可以参加表达式运算 字符串常量代表一个地址值(该字符串在内存中存放位置)
  3. 占内存大小 字符常量只占一个字节 字符串常量占若干个字节(至少一个字符结束标志)

System.out.println(3|9)输出什么?

正确答案:11。

考察知识点:&和&&;|和||

&和&&:

共同点:两者都可做逻辑运算符。它们都表示运算符的两边都是true时,结果为true;

不同点: &也是位运算符。& 表示在运算时两边都会计算,然后再判断;&&表示先运算符号左边的东西,然后判断是否为true,是true就继续运算右边的然后判断并输出,是false就停下来直接输出不会再运行后面的东西。

|和||:

共同点:两者都可做逻辑运算符。它们都表示运算符的两边任意一边为true,结果为true,两边都不是true,结果就为false;

不同点:|也是位运算符。| 表示两边都会运算,然后再判断结果;|| 表示先运算符号左边的东西,然后判断是否为true,是true就停下来直接输出不会再运行后面的东西,是false就继续运算右边的然后判断并输出。

回到本题:

3 | 9=0011(二进制) | 1001(二进制)=1011(二进制)=11(十进制)

String、StringBuffer、Stringbuilder有什么区别

第一点: 可变和适用范围。String对象是不可变的,而StringBuffer和StringBuilder是可变字符序列。每次对String的操作相当于生成一个新的String对象,而对StringBuffer和StringBuilder的操作是对对象本身的操作,而不会生成新的对象,所以对于频繁改变内容的字符串避免使用String,因为频繁的生成对象将会对系统性能产生影响。

第二点: 线程安全。String由于有final修饰,是immutable的,安全性是简单而纯粹的。StringBuilder和StringBuffer的区别在于StringBuilder不保证同步,也就是说如果需要线程安全需要使用StringBuffer,不需要同步的StringBuilder效率更高。

第三点: 在运行速度上, StringBuilder > StringBuffer > String.

String和StringBuffer、StringBuilder的区别是什么?String为什么是不可变的?

String和StringBuffer、StringBuilder的区别

可变性  

简单的来说:String 类中使用 final 关键字字符数组保存字符串,private final char value[],所以 String 对象是不可变的。而StringBuilder 与 StringBuffer 都继承自 AbstractStringBuilder 类,在 AbstractStringBuilder 中也是使用字符数组保存字符串char[]value 但是没有用 final 关键字修饰,所以这两种对象都是可变的。

StringBuilder 与 StringBuffer 的构造方法都是调用父类构造方法也就是 AbstractStringBuilder 实现的,大家可以自行查阅源码。

AbstractStringBuilder.java

abstract class AbstractStringBuilder implements Appendable, CharSequence {
    char[] value;
    int count;
    AbstractStringBuilder() {
    }
    AbstractStringBuilder(int capacity) {
        value = new char[capacity];
    }

线程安全性

String 中的对象是不可变的,也就可以理解为常量,线程安全。AbstractStringBuilder 是 StringBuilder 与 StringBuffer 的公共父类,定义了一些字符串的基本操作,如 expandCapacity、append、insert、indexOf 等公共方法。StringBuffer 对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。StringBuilder 并没有对方法进行加同步锁,所以是非线程安全的。   

性能

每次对 String 类型进行改变的时候,都会生成一个新的 String 对象,然后将指针指向新的 String 对象。StringBuffer 每次都会对 StringBuffer 对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用 StirngBuilder 相比使用 StringBuffer 仅能获得 10%~15% 左右的性能提升,但却要冒多线程不安全的风险。

对于三者使用的总结:

  1. 操作少量的数据 = String
  2. 单线程操作字符串缓冲区下操作大量数据 = StringBuilder
  3. 多线程操作字符串缓冲区下操作大量数据 = StringBuffer

String为什么是不可变的吗?

简单来说就是String类利用了final修饰的char类型数组存储字符,源码如下图所以:

    /** The value is used for character storage. */
    private final char value[];

String真的是不可变的吗?

我觉得如果别人问这个问题的话,回答不可变就可以了。 下面只是给大家看两个有代表性的例子:

1) String不可变但不代表引用不可以变

		String str = "Hello";
		str = str + " World";
		System.out.println("str=" + str);

结果:

str=Hello World

解析:

实际上,原来String的内容是不变的,只是str由原来指向"Hello"的内存地址转为指向"Hello World"的内存地址而已,也就是说多开辟了一块内存区域给"Hello World"字符串。

2) 通过反射是可以修改所谓的“不可变”对象

		// 创建字符串"Hello World", 并赋给引用s
		String s = "Hello World";

		System.out.println("s = " + s); // Hello World

		// 获取String类中的value字段
		Field valueFieldOfString = String.class.getDeclaredField("value");

		// 改变value属性的访问权限
		valueFieldOfString.setAccessible(true);

		// 获取s对象上的value属性的值
		char[] value = (char[]) valueFieldOfString.get(s);

		// 改变value所引用的数组中的第5个字符
		value[5] = '_';

		System.out.println("s = " + s); // Hello_World

结果:

s = Hello World
s = Hello_World

解析:

用反射可以访问私有成员, 然后反射出String对象中的value属性, 进而改变通过获得的value引用改变数组的结构。但是一般我们不会这么做,这里只是简单提一下有这个东西。

请你说说==与equals()的区别

  1. "=="比较的是两个引用在内存中指向的是不是同一对象(即同一内存空间), 也就是说在内存空间中的存储位置是否一致;equals()方法是由Object类提供的,可以由子类来进行重写.

  2. 功能不同: "=="是判断两个变量或实例是不是指向同一个对象, 即统一内存空间. "equals()"方法是判断两个变量或实例所指向的内存空间的值是不是相同.

  3. 定义不同: equals()在Java中是一个方法; "=="在Java中只是一个运算符号.

==:两侧可以是基本数据类型,此时用于比较数值是否相等;也可以是引用类型,此时比较两个引用是否指向同一个对象.

equals():是Object类提供的方法,用于比较对象是否相等,在Object类中,其作用等同于==,都是比较对象的地址是否相等;java强烈建议在子类中重写equals方法,让对象之间的比较更具有实际逻辑意义(即可以根据内容判断对象是否相等).

final,finally,finalize的区别

说说static修饰符的用法

得分点:static可以修饰什么,static的重要规则

标准答案:

Java类中包含了成员变量、方法、构造器、初始化块和内部类(包括接口、枚举)5种成员,static关键字可以修饰除了构造器外的其他4种成员。

static关键字修饰的成员被称为类成员。类成员属于整个类,不属于单个对象。 static关键字有一条非常重要的规则,即类成员不能访问实例成员,因为类成员属于类的,类成员的作用域比实例成员的作用域更大,很容易出现类成员初始化完成时,但实例成员还没被初始化,这时如果类成员访问实力成员就会引起大量错误。

加分回答:static修饰的部分会和类同时被加载。被static修饰的成员先于对象存在,因此,当一个类加载完毕,即使没有创建对象也可以去访问被static修饰的部分。

静态方法中没有this关键词,因为静态方法是和类同时被加载的,而this是随着对象的创建存在的。静态比对象优先存在。也就是说,静态可以访问静态,但静态不能访问非静态而非静态可以访问静态。

请你说一下final关键字

得分点:final类,final方法,final变量

标准答案:

final关键字可以用来标志其修饰的类,方法和变量不可变。 当final修饰类时,该类不能被继承,例如java.lang.Math类就是一个final类,它不能被继承。

final修饰的方法不能被重写,如果出于某些原因你不希望子类重写父类的某个方法,就可以用final关键字修饰这个方法。 当final用来修饰变量时,代表该变量不可被改变,一旦获得了初始值,该final变量的值就不能被重新赋值。

final既可以修饰成员变量(包括类变量和实例变量),也可以修饰局部变量、形参。

加分回答: 对于final修饰的成员变量而言,一旦有了初始值就不能被重新赋值,如果既没有在定义成员变量时指定初始值,也没有在初始化块,构造器中为成员变量指定初始值,那么这个成员变量的值将一直是系统默认分配的0、'\u0000'、false或者是null,那么这个成员变量就失去了存在的意义,所以Java语法规定:final修饰的成员变量必须由程序员显示的指定初始值。

final修饰的实例变量,要么在定义该实例变量时指定初始值,要么在普通初始化块或构造器中为该实例变量指定初始值。但要注意的是,如果普通初始化块已经为某个实例变量指定了初始值,则不能再在构造器中为该实例变量指定初始值;final修饰的类变量,要么在定义该变量时指定初始值,要么在静态初始化块中为该类变量指定初始值。

实例变量不能在静态初始化块中指定初始值,因为静态初始化块是静态成员,不可以访问实例变量;类变量不能在普通初始化块中指定初始值,因为类变量在类初始化阶段已经被初始化了,普通的初始化块不能为其重新赋值。

系统不会为局部变量进行初始化,所以局部变量必须由程序员显示的初始化。因此使用final修饰局部变量时,既可以在定义时指定默认值,也可以不指定默认值。如果final修饰的局部变量在定义是没有指定默认值,则可以在后面的代码中对该final变量赋初始值,但只能一次,不能重复赋值;如果final修饰的局部变量在定义时已经指定默认值,则后面代码中不能再对该变量赋值。

Object类有哪些方法?

这个问题,面试中经常出现。我觉得不论是出于应付面试还是说更好地掌握Java这门编程语言,大家都要掌握!

Object类的常见方法总结

Object类是一个特殊的类,是所有类的父类。它主要提供了以下11个方法:


public final native Class<?> getClass()//native方法,用于返回当前运行时对象的Class对象,使用了final关键字修饰,故不允许子类重写。

public native int hashCode() //native方法,用于返回对象的哈希码,主要使用在哈希表中,比如JDK中的HashMap。
public boolean equals(Object obj)//用于比较2个对象的内存地址是否相等,String类对该方法进行了重写用户比较字符串的值是否相等。

protected native Object clone() throws CloneNotSupportedException//naitive方法,用于创建并返回当前对象的一份拷贝。一般情况下,对于任何对象 x,表达式 x.clone() != x 为true,x.clone().getClass() == x.getClass() 为true。Object本身没有实现Cloneable接口,所以不重写clone方法并且进行调用的话会发生CloneNotSupportedException异常。

public String toString()//返回类的名字@实例的哈希码的16进制的字符串。建议Object所有的子类都重写这个方法。

public final native void notify()//native方法,并且不能重写。唤醒一个在此对象监视器上等待的线程(监视器相当于就是锁的概念)。如果有多个线程在等待只会任意唤醒一个。

public final native void notifyAll()//native方法,并且不能重写。跟notify一样,唯一的区别就是会唤醒在此对象监视器上等待的所有线程,而不是一个线程。

public final native void wait(long timeout) throws InterruptedException//native方法,并且不能重写。暂停线程的执行。注意:sleep方法没有释放锁,而wait方法释放了锁 。timeout是等待时间。

public final void wait(long timeout, int nanos) throws InterruptedException//多了nanos参数,这个参数表示额外时间(以毫微秒为单位,范围是 0-999999)。 所以超时的时间还需要加上nanos毫秒。

public final void wait() throws InterruptedException//跟之前的2个wait方法一样,只不过该方法一直等待,没有超时时间这个概念

protected void finalize() throws Throwable { }//实例被垃圾回收器回收的时候触发的操作

问完上面这个问题之后,面试官很可能紧接着就会问你“hashCode与equals”相关的问题。

请你说说hashCode()和equals()的区别,为什么重写equals()就要重写hashCode()
  • 为什么在重写 equals 方法的时候需要重写 hashCode 方法?

因为有强制的规范指定需要同时重写 hashcode 与 equals 是方法,许多容器类,如 HashMap、HashSet 都依赖于 hashcode 与 equals 的规定。

  • 有没有可能两个不相等的对象有相同的 hashcode?

有可能,两个不相等的对象可能会有相同的 hashcode 值,这就是为什么在 hashmap 中会有冲突。相等 hashcode 值的规定只是说如果两个对象相等,必须有相同的hashcode 值,但是没有关于不相等对象的任何规定。

  • 两个相同的对象会有不同的 hash code 吗?

不能,根据 hash code 的规定,这是不可能的。

hashCode()介绍

hashCode() 的作用是获取哈希码,也称为散列码;它实际上是返回一个int整数。这个哈希码的作用是确定该对象在哈希表中的索引位置。hashCode() 定义在JDK的Object.java中,这就意味着Java中的任何类都包含有hashCode() 函数。另外需要注意的是: Object 的 hashcode 方法是本地方法,也就是用 c 语言或 c++ 实现的,该方法通常用来将对象的 内存地址 转换为整数之后返回。

    public native int hashCode();

散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象)

为什么要有hashCode

我们以“HashSet如何检查重复”为例子来说明为什么要有hashCode:

当你把对象加入HashSet时,HashSet会先计算对象的hashcode值来判断对象加入的位置,同时也会与其他已经加入的对象的hashcode值作比较,如果没有相符的hashcode,HashSet会假设对象没有重复出现。但是如果发现有相同hashcode值的对象,这时会调用equals()方法来检查hashcode相等的对象是否真的相同。如果两者相同,HashSet就不会让其加入操作成功。如果不同的话,就会重新散列到其他位置。这样我们就大大减少了equals的次数,相应就大大提高了执行速度。

hashCode()与equals()的相关规定
  1. 如果两个对象相等,则hashcode一定也是相同的
  2. 两个对象相等,对两个对象分别调用equals方法都返回true
  3. 两个对象有相同的hashcode值,它们也不一定是相等的
  4. 因此,equals方法被覆盖过,则hashCode方法也必须被覆盖
  5. hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)
为什么两个对象有相同的hashcode值,它们也不一定是相等的?

因为hashCode() 所使用的杂凑算法也许刚好会让多个对象传回相同的杂凑值。越糟糕的杂凑算法越容易碰撞,但这也与数据值域分布的特性有关(所谓碰撞也就是指的是不同的对象得到相同的 hashCode)。

我们刚刚也提到了 HashSet,如果 HashSet 在对比的时候,同样的 hashcode 有多个对象,它会使用 equals() 来判断是否真的相同。也就是说 hashcode 只是用来缩小查找成本。

介绍一下包装类的自动拆装箱与自动装箱

得分点: 包装类的作用,应用场景

标准回答:自动装箱、自动拆箱是JDK1.5提供的功能。

自动装箱是指把一个基本类型的数据直接赋值给对应的包装类型;自动拆箱是指把一个包装类型的对象直接赋值给对应的基本类型;通过自动装箱、自动拆箱功能,可以大大简化基本类型变量和包装类对象之间的转换过程。比如,某个方法的参数类型为包装类型,调用时我们所持有的数据却是基本类型的值,则可以不做任何特殊的处理,直接将这个基本类型的值传入给方法。 加分回答 Java是一门非常纯粹的面向对象的编程语言,其设计理念是“一切皆对象”。但8种基本数据类型却不具备对象的特性。Java之所以提供8种基本数据类型,主要是为了照顾程序员的传统习惯。这8种基本数据类型的确带来了一定的方便性,但在某些时候也会受到一些制约。比如,所有的引用类型的变量都继承于Object类,都可以当做Object类型的变量使用,但基本数据类型却不可以。如果某个方法需要Object类型的参数,但实际传入的值却是数字的话,就需要做特殊的处理了。有了包装类,这种问题就可以得以简化。

不同包装类不能直接进行比较,这包括:

  • 不能用==进行直接比较,因为它们是不同的数据类型;
  • 不能转为字符串进行比较,因为转为字符串后,浮点值带小数点,整数值不带,这样它们永远都不相等;
  • 不能使用compareTo方法进行比较,虽然它们都有compareTo方法,但该方法只能对相同类型进行比较。

整数、浮点类型的包装类,都继承于Number类型,而Number类型分别定义了将数字转换为byte、short、int、long、float、double的方法。所以,可以将Integer、Double先转为转换为相同的基本数据类型(如double),然后使用==进行比较。

IO

请你说说BIO、NIO?

请你说说多路复用IO?

反射

请说说你对反射的了解

什么是反射

JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制。

getName、getCanonicalName与getSimpleName的区别?
  • getSimpleName:只获取类名
  • getName:类的全限定名,jvm中Class的表示,可以用于动态加载Class对象,例如Class.forName。
  • getCanonicalName:返回更容易理解的表示,主要用于输出(toString)或log打印,大多数情况下和getName一样,但是在内部类、数组等类型的表示形式就不同了。

请你说说Java的四种引用方式

得分点:强引用、软引用、弱引用、虚引用

标准回答:在JDK 1.2版之前,一个对象只有“被引用”或者“未被引用”两种状态,对于描述一些“不太重要”的对象就显得无能为力。譬如我们希望能描述一类对象:当内存空间还足够时,能保留在内存之中,如果内存空间在进行垃圾收集后仍然非常紧张,那就可以抛弃这些对象。很多系统的缓存功能都符合这样的应用场景。

在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为分为强引用、软引用、弱引用、虚引用4种,这4种引用强度依次逐渐减弱。

强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。

软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。

弱引用也是用来描述那些非必须的对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。

虚引用是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。

什么是反射机制?反射机制的应用场景有哪些?

反射机制介绍

JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制。

静态编译和动态编译
  • 静态编译: 在编译时确定类型,绑定对象
  • 动态编译: 运行时确定类型,绑定对象
反射机制优缺点
  • 优点: 运行期类型的判断,动态加载类,提高代码灵活度。
  • 缺点: 性能瓶颈:反射相当于一系列解释操作,通知 JVM 要做的事情,性能比直接的java代码要慢很多。
反射的应用场景

反射是框架设计的灵魂。

在我们平时的项目开发过程中,基本上很少会直接使用到反射机制,但这不能说明反射机制没有用,实际上有很多设计、开发都与反射机制有关,例如模块化的开发,通过反射去调用对应的字节码;动态代理设计模式也采用了反射机制,还有我们日常使用的 Spring/Hibernate 等框架也大量使用到了反射机制。

举例:

①我们在使用JDBC连接数据库时使用Class.forName()通过反射加载数据库的驱动程序;

②Spring框架也用到很多反射机制,最经典的就是xml的配置模式。Spring 通过 XML 配置模式装载 Bean 的过程:

  1. 将程序内所有 XML 或 Properties 配置文件加载入内存中;

  2. Java类里面解析xml或properties里面的内容,得到对应实体类的字节码字符串以及相关的属性信息;

  3. 使用反射机制,根据这个字符串获得某个类的Class实例;

  4. 动态配置实例的属性

泛型

为什么需要泛型

  1. 适用于多种数据类型执行相同的代码
  2. 泛型中的类型在使用时指定,不需要强制类型转换(类型安全,编译器会检查类型)

你是如何理解Java中的泛型的?

泛型是JDK1.5推出的一种参数化的类型,我们可以将定义类型时使用的泛型,理解为形参。例如,List、Map<K,V>接口中的E,K,V都可以看成是泛型,也就是一种特殊的形参,当我们应用这些集合时传入的具体类型可以看成是实际参数。例如List这里的String可以看成是实际参数。泛型也是是编译时的一种类型,此类型仅仅在编译阶段有效,运行时无效.例如List在运行时String会被擦除,最终系统会认为都是Object类型。

说说泛型应用在什么场景呢?

泛型是实现通用编程的一种手段,通常应用在类,接口,方法的定义上,例如:

1.泛型类: class 类名<泛型,…>{} 2.泛型接口: interface 接口名<泛型,…>{} 3.泛型方法: 访问修饰符 <泛型> 方法返回值类型 方法名(形参){}

代码演示:

泛型接口的定义,例如:

interface Container<T>{//泛型接口
	 void add(T t);
	 T get(int i);
	 int size();
}

interface Task<Param,Result>{//思考map中的泛型Map<K,V>
	/**
	 * 此方法用于执行任务
	 * @param arg 其类型由泛型参数Param决定
	 * @return 其类型由泛型参数result决定
	 */
	Result execute(Param arg1);
}

泛型类的定义,例如:

interface Result<T>{//泛型类
	T data;
}

泛型方法定义,例如:

class ObjectFactory{
	 //泛型方法
	 public <T>T newInstance(Class<T> cls)
	 throws Exception{
		 return cls.newInstance();
	 }
}

class ContainerUtils{
	//泛型方法
	//1)静态方法假如有泛型肯定是泛型方法
	//2)泛型类和泛型接口不作用于静态方法
	//3)泛型方法一定是静态方法吗?不是
	public static <T>void sort(List<T> list) {}
}

总结:

  1. 泛型类和泛型接口用于约束类或接口中实例方法参数类型,返回值类型。
  2. 泛型类或泛型接口中实际泛型类型可以在定义子类或构建其对象时传入。
  3. 泛型方法用于约束本方法(实例方法或静态方法)的参数类型或返回值类型。
  4. 泛型类上的泛型不能约束类中静态方法的泛型类型。

如何理解Java中的泛型通配符?

Java中的泛型通配符一般可以理解为一种通用的类型,也可认为不确定性类型。从应用上,它可分为三种类型: 1)无届通配符: 2)上届通配符: 3)下届通配符:<类型 extends ?>

代码演示:

 //无届通配符
 Class<?> c2=Class.forName("java.lang.Object");

//上界通配符
static void doPrint(List<? extends CharSequence> list){
		System.out.println(list);
}

//下界通配符
static void doPrint(Set<? super Integer> set){//下届
		System.out.println(list);
}

说说什么是泛型类型擦除?

泛型是编译时的一种类型,在运行时无效,运行时候都会变成Object类型。 例如基于反射向List list=new ArrayList() 集合中添加整数,关键代码如下:

List<String> list=new ArrayList<>();
list.add("A");
list.add("B");
//list.add(100);
//在运行时将100写入到list集合
//1.获取list对象的字节码对象
Class<?> cls=list.getClass();
//2.获取list字节码对象中的add方法对象
Method method=
//cls.getDeclaredMethod("add",Object.class);
cls.getDeclaredMethod("add",int.class,Object.class);
//3.通过反射执行方法对象将100写入集合。
//执行list对象的method方法
//method.invoke(list, 100);
method.invoke(list, 0,100);
System.out.println(list);

泛型中类型擦除 Java泛型这个特性是从JDK 1.5才开始加入的,因此为了兼容之前的版本,Java泛型的实现采取了“伪泛型”的策略,即Java在语法上支持泛型,但是在编译阶段会进行所谓的“类型擦除”(Type Erasure),将所有的泛型表示(尖括号中的内容)都替换为具体的类型(其对应的原生态类型),就像完全没有泛型一样。

注解

注解的作用?

它主要的作用有以下四方面:

  1. 生成文档,通过代码里标识的元数据生成javadoc文档。
  2. 编译检查,通过代码里标识的元数据让编译器在编译期间进行检查验证。
  3. 编译时动态处理,编译时通过代码里标识的元数据动态处理,例如动态生成代码。
  4. 运行时动态处理,运行时通过代码里标识的元数据动态处理,例如使用反射注入实例。

集合

容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表。

Collection

  • Set
    1. TreeSet 基于红黑树实现,支持有序性操作,例如根据一个范围查找元素的操作。但是查找效率不如 HashSet,HashSet 查找的时间复杂度为 O(1),TreeSet 则为 O(logN)。
    2. HashSet 基于哈希表实现,支持快速查找,但不支持有序性操作。并且失去了元素的插入顺序信息,也就是说使用 Iterator 遍历 HashSet 得到的结果是不确定的。
    3. LinkedHashSet 具有 HashSet 的查找效率,且内部使用双向链表维护元素的插入顺序。
  • list
    1. ArrayList 基于动态数组实现,支持随机访问。
    2. Vector 和 ArrayList 类似,但它是线程安全的。
    3. LinkedList 基于双向链表实现,只能顺序访问,但是可以快速地在链表中间插入和删除元素。不仅如此,LinkedList 还可以用作栈、队列和双向队列。
  • Queue
    1. LinkedList 可以用它来实现双向队列。
    2. PriorityQueue 基于堆结构实现,可以用它来实现优先队列。

LinkedList和ArrayList的区别

相同点: 都实现了List接口和collection,都是线程不安全的.

不同点:

  1. ArrayList是基于Object数组实现的,LinkedList基于双向链表实现的;
  2. ArrayList随机查询速度快,LinkedList插入和删除速度快.
  3. 插入和删除是否受元素位置的影响: ① ArrayList 采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。 比如:执行add(E e) 方法的时候, ArrayList 会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element) )时间复杂度就为 O(n-i)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。 ② LinkedList 采用链表存储,所以插入,删除元素时间复杂度不受元素位置的影响,都是近似 O(1) 而数组为近似 O(n) 。
  4. 是否支持快速随机访问: LinkedList 不支持高效的随机元素访问,而 ArrayList 支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于get(int index) 方法)。
  5. 内存空间占用: ArrayList的空 间浪费主要体现在在list列表的结尾会预留一定的容量空间,而LinkedList的空间花费则体现在它的每一个元素都需要消耗比ArrayList更多的空间(因为要存放直接后继和直接前驱以及数据)。

补充内容:RandomAccess接口

public interface RandomAccess {
}

查看源码我们发现实际上 RandomAccess 接口中什么都没有定义。所以,在我看来 RandomAccess 接口不过是一个标识罢了。标识什么? 标识实现这个接口的类具有随机访问功能。

在 binarySearch() 方法中,它要判断传入的 list 是否RamdomAccess的实例,如果是,调用 indexedBinarySearch() 方法,如果不是,那么调用 iteratorBinarySearch() 方法.

    public static <T>
    int binarySearch(List<? extends Comparable<? super T>> list, T key) {
        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
            return Collections.indexedBinarySearch(list, key);
        else
            return Collections.iteratorBinarySearch(list, key);
    }

ArraysList 实现了 RandomAccess 接口, 而 LinkedList 没有实现。为什么呢?我觉得还是和底层数据结构有关!ArraysList 底层是数组,而 LinkedList 底层是链表。数组天然支持随机访问,时间复杂度为 O(1) ,所以称为快速随机访问。链表需要遍历到特定位置才能访问特定位置的元素,时间复杂度为 O(n) ,所以不支持快速随机访问。,ArraysList 实现了 RandomAccess 接口,就表明了他具有快速随机访问功能。 RandomAccess 接口只是标识,并不是说 ArraysList 实现 RandomAccess 接口才具有快速随机访问功能的!

下面再总结一下 list 的遍历方式选择:

  • 实现了RandomAccess接口的list,优先选择普通for循环 ,其次foreach,
  • 未实现RandomAccess接口的ist, 优先选择iterator遍历(foreach遍历底层也是通过iterator实现的),大size的数据,千万不要使用普通for循环

Map

  • TreeMap 基于红黑树实现。
  • HashMap 1.7基于哈希表实现,1.8基于数组+链表+红黑树。
  • HashTable 和 HashMap 类似,但它是线程安全的,这意味着同一时刻多个线程可以同时写入 HashTable 并且不会导致数据不一致。它是遗留类,不应该去使用它。现在可以使用 ConcurrentHashMap 来支持线程安全,并且 ConcurrentHashMap 的效率会更高(1.7 ConcurrentHashMap 引入了分段锁, 1.8 引入了红黑树)。
  • LinkedHashMap 使用双向链表来维护元素的顺序,顺序为插入顺序或者最近最少使用(LRU)顺序。

你知道哪些线程安全的集合?

请你说说ConcurrentHashMap

ConcurrentHashMap 和 Hashtable 的区别

ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。

  • 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的;
  • 实现线程安全的方式(重要):在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁):使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。

两者的对比图:

图片来源:http://www.cnblogs.com/chengxiao/p/6842045.html

Hashtable: alt JDK1.7的ConcurrentHashMap: alt JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点):

请你说说HashMap和Hashtable的区别

  1. 线程是否安全: HashMap 是非线程安全的,Hashtable 是线程安全的;Hashtable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!);
  2. 效率: 因为线程安全的问题,HashMap 要比 Hashtable 效率高一点。另外,Hashtable 基本被淘汰,不要在代码中使用它;
  3. 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 Hashtable 中 put 进的键值只要有一个 null,直接抛出 NullPointerException。
  4. 初始容量大小和每次扩充容量大小的不同 : ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小(HashMap 中的tableSizeFor()方法保证,下面给出了源代码)。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。
  5. 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。

HashMap是线程安全的吗?如果不是该如何解决?

HashMap为什么不是线程安全的?

(多线程操作无并发控制,顺便说了在扩容的时候多线程访问时会造成死锁,会形成一个环,不过扩容时多线程操作形成环的问题再JDK1.8已经解决,但多线程下使用HashMap还会有一些其他问题比如数据丢失,所以多线程下不应该使用HashMap,而应该使用ConcurrentHashMap)

怎么让HashMap变得线程安全?

(Collections的synchronize方法包装一个线程安全的Map,或者直接用ConcurrentHashMap)

两者的区别是什么?

(前者直接在put和get方法加了synchronize同步,后者采用了分段锁以及CAS支持更高的并发)

jdk1.8对ConcurrentHashMap做了哪些优化?

(插入的时候如果数组元素使用了红黑树,取消了分段锁设计,synchronize替代了Lock锁)

为什么这样优化?

(避免冲突严重时链表多长,提高查询效率,时间复杂度从O(N)提高到O(logN))

HashMap 和 Hashtable 的区别/HashSet 和 HashMap 区别

HashSet 和 HashMap 区别

如果你看过 HashSet 源码的话就应该知道:HashSet 底层就是基于 HashMap 实现的。(HashSet 的源码非常非常少,因为除了 clone() 方法、writeObject()方法、readObject()方法是 HashSet 自己不得不实现之外,其他方法都是直接调用 HashMap 中的方法。)

hashtable hashmap treemap区别

具体实现

具体实现

既然谈到了红黑树,你给我手绘一个出来吧,然后简单讲一下自己对于红黑树的理解

红黑树特点:

  1. 每个节点非红即黑;
  2. 根节点总是黑色的;
  3. 每个叶子节点都是黑色的空节点(NIL节点);
  4. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定);
  5. 从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)

红黑树的应用:

TreeMap、TreeSet以及JDK1.8之后的HashMap底层都用到了红黑树。

为什么要用红黑树

简单来说红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。

红黑树这么优秀,为何不直接使用红黑树得了?

说一下自己对于这个问题的看法:我们知道红黑树属于(自)平衡二叉树,但是为了保持“平衡”是需要付出代价的,红黑树在插入新数据后可能需要通过左旋,右旋、变色这些操作来保持平衡,这费事啊。你说说我们引入红黑树就是为了查找数据快,如果链表长度很短的话,根本不需要引入红黑树的,你引入之后还要付出代价维持它的平衡。但是链表过长就不一样了。至于为什么选 8 这个值呢?通过概率统计所得,这个值是综合查询成本和新增元素成本得出的最好的一个值。

请你说说HashMap底层原理

哈希表有两种实现方式,一种开放地址方式(Open addressing),另一种是冲突链表方式(Separate chaining with linked lists)。Java7 HashMap采用的是冲突链表方式。

JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的时数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。

所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。

alt

从上图容易看出,如果选择合适的哈希函数,使用put(key,value)存储对象到HashMap中,使用get(key)从HashMap中获取对象. 当我们用put()方法传递键和值时,我们先对键调用hashCode)方法, 计算并返回的hashCode()是用于找到Map数组的bucket位置来存储Node对象. 这里关键点在于指出, HashMap是在bucket中储存键对象和值对象, 作为Map.Node. put()和get()方法可以在常数时间内完成。但在对HashMap进行迭代时,需要遍历整个table以及后面跟的冲突链表。因此对于迭代比较频繁的场景,不宜将HashMap的初始大小设的过大。

有两个参数可以影响HashMap的性能: 初始容量(inital capacity)和负载系数(load factor)。初始容量指定了初始table的大小,负载系数用来指定自动扩容的临界值。当entry的数量超过capacity*load_factor时,容器将自动扩容并重新哈希。对于插入元素较多的场景,将初始容量设大可以减少重新哈希的次数。

根据 Java7 HashMap 的介绍,我们知道,查找的时候,根据 hash 值我们能够快速定位到数组的具体下标,但是之后的话,需要顺着链表一个个比较下去才能找到我们需要的,时间复杂度取决于链表的长度,为 O(n)。 为了降低这部分的开销,在 Java8 中,当链表中的元素达到了 8 个时,会将链表转换为红黑树,在这些位置进行查找的时候可以降低时间复杂度为 O(logN)。

alt

以下是具体的put过程:

  1. 对Key求Hash值, 然后再计算下标.
  2. 如果没有碰撞, 直接放入桶中(碰撞的意思是计算得到的Hash值相同, 需要放入同一个bucket中)
  3. 如果碰撞了, 以链表的方式链接到后面.
  4. 如果链表长度超过阈值(如8),就把链表转为红黑树, 链表长度低于6, 就把红黑树转回链表.
  5. 如果节点已经存在就替换旧值.
  6. 如果桶满了(容量 16* 加载因子0.75), 就需要resize(扩容2倍后重排).

具体的get过程:

  1. HashMap会使用键对象的hashCode找到bucket位置.
  2. 找到bucket位置后, 会调用keys.equals()方法区找到链表中正确的节点, 最终找到要找的值对象.

JDK 1.8 HashMap 的 hash 方法源码:

JDK 1.8 的 hash方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。

      static final int hash(Object key) {
        int h;
        // key.hashCode():返回散列值也就是hashcode
        // ^ :按位异或
        // >>>:无符号右移,忽略符号位,空位都以0补齐
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

对比一下 JDK1.7的 HashMap 的 hash 方法源码.

static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).

    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。

所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

相比于之前的版本, JDK1.8之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。

TreeMap、TreeSet以及JDK1.8之后的HashMap底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。

问完 HashMap 的底层原理之后,面试官可能就会紧接着问你 HashMap 底层数据结构相关的问题!

ConcurrentHashMap线程安全的具体实现方式/底层具体实现

JDK1.7(上面有示意图)

首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。

ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成

Segment 实现了 ReentrantLock,所以 Segment 是一种可重入锁,扮演锁的角色。HashEntry 用于存储键值对数据。

static class Segment<K,V> extends ReentrantLock implements Serializable {
}

一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。

JDK1.8(上面有示意图)

ConcurrentHashMap取消了Segment分段锁,采用CAS和synchronized来保证并发安全。数据结构跟HashMap1.8的结构类似,数组+链表/红黑二叉树。

synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。