Problem 2277 Change
Accept: 245 Submit: 1186
Time Limit: 2000 mSec Memory Limit : 262144 KB
Problem Description
There is a rooted tree with n nodes, number from 1-n. Root’s number is 1.Each node has a value ai.
Initially all the node’s value is 0.
We have q operations. There are two kinds of operations.
1 v x k : a[v]+=x , a[v’]+=x-k (v’ is child of v) , a[v’’]+=x-2*k (v’’ is child of v’) and so on.
2 v : Output a[v] mod 1000000007(10^9 + 7).
Input
First line contains an integer T (1 ≤ T ≤ 3), represents there are T test cases.
In each test case:
The first line contains a number n.
The second line contains n-1 number, p2,p3,…,pn . pi is the father of i.
The third line contains a number q.
Next q lines, each line contains an operation. (“1 v x k” or “2 v”)
1 ≤ n ≤ 3*10^5
1 ≤ pi < i
1 ≤ q ≤ 3*10^5
1 ≤ v ≤ n; 0 ≤ x < 10^9 + 7; 0 ≤ k < 10^9 + 7
Output
For each operation 2, outputs the answer.
Sample Input
1 3 1 1 3 1 1 2 1 2 1 2 2
Sample Output
2 1
Source
题意:给你一棵树 有两种操作:查询节点的值,和将所有树节点及以下下所有的节点 + x - (子节点深度-当前深度)*k 的值
题解:首先肯定是DFS建序,然后根据dfs 序建一颗线段树,这题更新操作是更新一个区间,查询是单点。
这题只要用一个dep数组保存每个节点所包含区间里面的最小深度,然后向下更新的时候每次把,x,和k,更新下去;
更新的时候直接把,(子节点深度-当前深度)*k的值更新到 ,x,里面。
查询直接返回单点的x.
这题主要是卡取模和读入。。。读入特么就快超时了,最让我无语的还是超时给我返回一个WA加个读入挂就过了。。。。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<stack>
using namespace std;
typedef long long ll;
typedef ll LL;
typedef unsigned long long ull;
typedef pair<int,int> P;
#define bug printf("*********\n");
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define mid (l+r)/2
#define chl 2*k+1
#define chr 2*k+2
#define lson l,mid,chl
#define rson mid,r,chr
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a));
const long long mod=1e9+7;
const int maxn=3e5+5;
const int INF=0x7fffffff;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
int e[maxn],s[maxn],tdep[maxn];
int cnt=0;
struct node {
ll x,k;
} lazy[maxn<<4];
int dep[maxn<<4];
struct edge {
int to,next;
} eg[maxn];
int head[maxn],tot;
void add(int u,int v) {
eg[tot].to=v;
eg[tot].next=head[u];
head[u]=tot++;
}
void init() {
tot=0;
cnt=0;
mem(head,-1);
}
int dfs(int r,int dp) {
cnt++;
s[r]=cnt;
tdep[cnt]=dp;
for(int i=head[r]; i!=-1; i=eg[i].next) {
int to=eg[i].to;
dfs(to,dp+1);
}
e[r]=cnt;
}
void build(int l,int r,int k) {
if(r-l==1) {
dep[k]=tdep[r];
lazy[k].k=0;
lazy[k].x=0;
} else {
build(lson);
build(rson);
dep[k]=min(dep[chl],dep[chr]);
lazy[k].k=0;
lazy[k].x=0;
}
}
void pushdown(int l,int r,int k) {
if(lazy[k].k==0&&lazy[k].x==0) return ;
lazy[chl].k+=lazy[k].k;
lazy[chl].k%=mod;
lazy[chr].k+=lazy[k].k;
lazy[chr].k%=mod;
lazy[chl].x+=(lazy[k].x-lazy[k].k%mod*(dep[chl]-dep[k])+mod)%mod;
lazy[chl].x=(lazy[chl].x+mod)%mod;
lazy[chr].x+=(lazy[k].x-lazy[k].k%mod*(dep[chr]-dep[k])+mod)%mod;
lazy[chr].x=(lazy[chr].x+mod)%mod;
lazy[k].x=0;
lazy[k].k=0;
}
void update(int a,int b,int l,int r,int k,ll x,ll y,ll dp) {
if(b<=l||a>=r) {
return ;
} else if(a<=l&&r<=b) {
lazy[k].x+=(x-y*(dep[k]-dp)%mod+mod)%mod;
lazy[k].x%=mod;
lazy[k].k+=y;
lazy[k].k%=mod;
return ;
} else {
pushdown(l,r,k);
update(a,b,lson,x,y,dp);
update(a,b,rson,x,y,dp);
}
}
ll res=0;
void query(int a,int b,int l,int r,int k) {
if(b<=l||a>=r) {
return ;
} else if(a<=l&&r<=b) {
res=lazy[k].x%mod;
return ;
} else {
pushdown(l,r,k);
query(a,b,lson);
query(a,b,rson);
}
}
void read(LL &sum) {
sum=0;
char ch=getchar();
while(!(ch>='0'&&ch<='9'))ch=getchar();
while(ch>='0'&&ch<='9')sum=sum*10+ch-48,ch=getchar();
}
void read(int &sum) {
sum=0;
char ch=getchar();
while(!(ch>='0'&&ch<='9'))ch=getchar();
while(ch>='0'&&ch<='9')sum=sum*10+ch-48,ch=getchar();
}
int main() {
int n,t;
read(t);
while(t--) {
init();
scanf("%d",&n);
for(int i=2; i<=n; i++) {
int x;
read(x);
add(x,i);
}
dfs(1,1);
build(0,n,0);
int q;
read(q);
while(q--) {
int op;
read(op);
ll a,b,c;
if(op==1) {
read(a);
read(b);
read(c);
update(s[a]-1,e[a],0,n,0,b,c,tdep[s[a]]);
} else {
scan_d<LL>(a);
query(s[a]-1,s[a],0,n,0);
printf("%lld\n",(res+mod)%mod);
}
}
}
return 0;
}