题目主要信息:

  • 给定两个长度可能不同的字符串,可以对第一个字符串增删改字符
  • 求增删改的最少次数,让第一个字符串变成第二个字符串
  • 字符串中只出现大小写字母

具体思路:

把第一个字符串变成第二个字符串,我们需要逐个将第一个字符串的子串最少操作下变成第二个字符串,这就涉及了第一个字符串增加长度,状态转移,那可以考虑动态规划。用dp[i][j]表示从两个字符串首部各自到str1[i]str2[j]为止的子串需要的编辑距离,那很明显dp[str1.length][str2.length]就是我们要求的编辑距离。(下标从1开始)

  • step 1:初始条件: 假设第二个字符串为空,那很明显第一个字符串子串每增加一个字符,编辑距离就加1,这步操作是删除;同理,假设第一个字符串为空,那第二个字符串每增加一个字符,编剧距离就加1,这步操作是添加。
  • step 2:状态转移: 状态转移肯定是将dp矩阵填满,那就遍历第一个字符串的每个长度,对应第二个字符串的每个长度。如果遍历到str1[i]str2[j]的位置,这两个字符相同,这多出来的字符就不用操作,操作次数与两个子串的前一个相同,因此有dp[i][j]=dp[i1][j1]dp[i][j] = dp[i - 1][j - 1];如果这两个字符不相同,那么这两个字符需要编辑,但是此时的最短的距离不一定是修改这最后一位,也有可能是删除某个字符或者增加某个字符,因此我们选取这三种情况的最小值增加一个编辑距离,即dp[i][j]=min(dp[i1][j1],min(dp[i1][j],dp[i][j1]))+1dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1

具体状态转移过程可以参考如下图:

alt

代码实现:

class Solution {
public:
    int editDistance(string str1, string str2) {
        int n1 = str1.length();
        int n2 = str2.length();
        vector<vector<int> > dp(n1 + 1, vector<int>(n2 + 1, 0)); //dp[i][j]表示到str1[i]和str2[j]为止的子串需要的编辑距离
        for(int i = 1; i <= n1; i++) //初始化边界
            dp[i][0] = dp[i - 1][0] + 1;
        for(int i = 1; i <= n2; i++)
            dp[0][i] = dp[0][i - 1] + 1;
        for(int i = 1; i <= n1; i++) //遍历第一个字符串的每个位置
            for(int j = 1; j <= n2; j++){ //对应第二个字符串每个位置
                if(str1[i - 1] == str2[j - 1]) //若是字符相同,此处不用编辑
                    dp[i][j] = dp[i - 1][j - 1]; //直接等于二者前一个的距离
                else
                    dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1; //选取最小的距离加上此处编辑距离1
            }
        return dp[n1][n2]; 
    }
};

复杂度分析:

  • 时间复杂度:O(mn)O(mn),其中mmnn分别为两个字符串的长度,初始化dp数组单独遍历两个字符串,后续动态规划过程两层遍历
  • 空间复杂度:o(mn)o(mn),辅助数组dp的空间