题目背景
\(Roy\)和\(October\)两人在玩一个取石子的游戏。
题目描述
游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且\(p^k\)小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。
现在\(October\)先取,问她有没有必胜策略。
若她有必胜策略,输出一行"\(October wins!\)";否则输出一行"\(Roy wins!\)"。
输入输出格式
输入格式:
第一行一个正整数T,表示测试点组数。
第\(2\)行~第\((T+1)\)行,一行一个正整数\(n\),表示石子个数。
输出格式:
\(T\)行,每行分别为"\(October wins!\)"或"\(Roy wins!\)"。
输入输出样例
输入样例#1:
3
4
9
14
输出样例#1:
October wins!
October wins!
October wins!
说明
对于\(30\%\)的数据,\(1<=n<=30\);
对于\(60\%\)的数据,\(1<=n<=1,000,000\);
对于\(100\%\)的数据,\(1<=n<=50,000,000,1<=T<=100,000\)。
(改编题)
思路:被洛谷标签给骗了,不知道为什么这道题的标签是\(prim\),本来是想练最小生成树,看数据范围,根本不可做,而且……也没法建边啊,洛谷标签真的是……不过点进来了,就做做吧,发现这其实就是个打表题,如果输入的\(n\)模\(6\)值为\(0\),就是先手必败态,否则为先手必胜态。
代码:
#include<cstdio>
using namespace std;
int t,n;
int main() {
scanf("%d",&t);
while(t--) {
scanf("%d",&n);
if(n%6) printf("October wins!\n");
else printf("Roy wins!\n");
}
return 0;
}